|
- 2018
渝西北土壤重金属分布特征及其风险评价
|
Abstract:
为全面了解重庆西北地区(潼南区、铜梁区、合川区和大足区)土壤中重金属质量分数、分布特征及其生态风险,在该区共采集表层土壤样品6 792件,测定了As,Cd,Cr,Cu,Hg,Ni,Pb和Zn等8种重金属元素质量分数,并用土壤环境质量标准(GB15618-1995)和潜在生态风险指数对土壤重金属污染进行评价.结果表明:1)表层土壤Cd质量分数累积效应最大,是背景值的2.43倍,超标比例为18.67%,其余7种重金属元素质量分数平均值低于土壤环境质量一级标准值;2)空间分布特征表明,Zn,Cd,Pb,As,Ni,Cu和Cr 7种元素在研究区西部质量分数较高,Hg在东部质量分数较高,主要受地层控制和土地利用方式的影响;3)研究区重金属污染对该区构成的潜在生态危害由强至弱依次为:Cd,Hg,As,Pb,Cu,Ni,Cr,Zn,整体处于中等潜在生态风险等级,主要受Cd和Hg元素的影响,二者可能造成的生态危害应引起重视.
In order to have a detailed knowledge of the mass fraction, distribution and ecological risk of heavy metals in the soils of northwest Chongqing, 6 792 soil samples were collected from Tongnan district, Tongliang district, Hechuan district and Dazu district of the municipality and analyzed for the mass fraction of As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. Soil environmental quality standard (GB15618-1995) and potential ecological risk index were used to evaluate the degree of pollution by the heavy metals. The results indicated that Cd mass fraction in topsoil had the greatest accumulative effect, being as much as 2.43 times that of the background value and above Grade Ⅱ Criterion by 18.67%. However, the average contents of the other heavy metals were all below Grade Ⅰ Criterion. Influenced by different strata and land utilization forms, the spatial distribution of these heavy metals were characterized by higher mass fraction of Zn, Cd, Pb, As, Ni, Cu and Cr in the western part of the study area and higher mass fraction of Hg in its eastern part. Comparatively speaking, the potential ecological risk of soil heavy metals in the study area was found to be in the middle level of potential ecological risk. It was characterized by the order of Cd>Hg>As>Pb>Cu>Ni>Cr>Zn, with the predominant risk factors being Cd and Hg. The possible ecological hazards caused by Cd and Hg should be paid more attention to
[1] | 国家环境保护局, 国家技术监督局. 土壤环境质量标准: GB 15618-1995[S]. 北京: 中国标准出版社, 1995. |
[2] | 秦鱼生, 喻华, 冯文强, 等. 成都平原北部水稻土重金属含量状况及其潜在生态风险评价[J]. 生态学报, 2013, 33(19): 6335-6344. |
[3] | ASHRAF M, OZTURK M, AHMAD M S A. Plant adaptation and phytoremediation[M]. New York: Springer, 2010. |
[4] | 许振成, 杨晓云, 温勇, 等. 北江中上游底泥重金属污染及其潜在生态危害评价[J]. 环境科学, 2009, 30(11): 3262-3268. DOI:10.3321/j.issn:0250-3301.2009.11.022 |
[5] | 魏树和, 周启星. 重金属污染土壤植物修复基本原理及强化措施探讨[J]. 生态学杂志, 2004, 23(1): 65-72. |
[6] | 张菊, 陈诗越, 邓焕广, 等. 山东省部分水岸带土壤重金属含量及污染评价[J]. 生态学报, 2012, 32(10): 3144-3153. |
[7] | WANG Y Q, YANG L Y, KONG L H, et al. Spatial Distribution, Ecological Risk Assessment and Source Identification for Heavy Metals in Surface Sediments from Dongping Lake, Shandong, East China[J]. Catena, 2015, 125: 200-205. DOI:10.1016/j.catena.2014.10.023 |
[8] | YANG P G, MAO R Z, SHAO H B, et al. The Spatial Variability of Heavy Metal Distribution in the Suburban Farmland of Taihang Piedmont Plain, China[J]. Comptes Rendus Biologies, 2009, 332(6): 558-566. DOI:10.1016/j.crvi.2009.01.004 |
[9] | 周萍, 文安邦, 史忠林, 等. 三峡库区不同土地利用土壤重金属分布特征与污染评价[J]. 农业机械学报, 2017, 48(7): 207-213. DOI:10.6041/j.issn.1000-1298.2017.07.026 |
[10] | BENHADDYA M L, HADJEL M. Spatial Distribution and Contamination Assessment of Heavy Metals in Surface Soils of Hassi Messaoud, Algeria[J]. Environmental Earth Sciences, 2014, 71(3): 1473-1486. DOI:10.1007/s12665-013-2552-3 |
[11] | 刘硕, 吴泉源, 曹学江, 等. 龙口煤矿区土壤重金属污染评价与空间分布特征[J]. 环境科学, 2016, 37(1): 270-279. |
[12] | 王幼奇, 白一茹, 王建宇. 基于GIS的银川市不同功能区土壤重金属污染评价及分布特征[J]. 环境科学, 2016, 37(2): 710-716. |
[13] | 李燕燕, 李章平, 熊海灵, 等. 重庆市街道灰尘重金属污染的健康风险评价[J]. 西南大学学报(自然科学版), 2015, 37(2): 18-23. |
[14] | 谭小爱, 王平, 邹亚萍, 等. 旅游活动对香格里拉景区土壤重金属污染的影响[J]. 西南大学学报(自然科学版), 2017, 39(6): 121-127. |
[15] | 中华人民共和国国土资源部. DZ/T 0258-2014多目标区域地球化学调查规范(1: 250000)[S]. 北京: 中国标准出版社, 2014. |
[16] | HAKANSON L. An Ecological Risk Index for Aquatic Pollution Control:A Sedimentological Approach[J]. Water Research, 1980, 14(8): 975-1001. DOI:10.1016/0043-1354(80)90143-8 |
[17] | 李婷婷, 罗维, 吕瑜良, 等. 胶州湾水环境重金属立体分布、污染及风险[J]. 西南师范大学学报(自然科学版), 2016, 41(6): 60-66. |
[18] | 龚媛媛, 鲍丽然, 张茂忠, 等. 中华人民共和国多目标区域地球化学调查报告及预警报告: 比例尺1/250000重庆市(潼南-永川-万盛地区)[R/OL]. (2013-09-01)[2017-06-03]. http://www.ngac.cn/dzzlfw_sjgl/d2d/dse/category/detail.do?method=cdetail&_id=132085&tableCode=ty_qgg_edmk_t_ajxx&categoryCode=dzzlk. |
[19] | BANERJEE A D. Heavy Metal Levels and Solid Phase Speciation in Street Dusts of Delhi, India[J]. Environmental Pollution, 2003, 123(1): 95-105. DOI:10.1016/S0269-7491(02)00337-8 |
[20] | SEZGIN N, OZCAN H K, DEMIR G, et al. Determination of Heavy Metal Concentrations in Street Dusts in Istanbul E-5 Highway[J]. Environment International, 2004, 29(7): 979-985. DOI:10.1016/S0160-4120(03)00075-8 |
[21] | 姜菲菲, 孙丹峰, 李红, 等. 北京市农业土壤重金属污染环境风险等级评价[J]. 农业工程学报, 2011, 27(8): 330-337. |
[22] | LI Z Y, MA Z W, KUIJP T J, et al. A Review of Soil Heavy Metal Pollution from Mines in China:Pollution and Health Risk Assessment[J]. Science of the Total Environment, 2014, 468/469: 843-853. DOI:10.1016/j.scitotenv.2013.08.090 |
[23] | 谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3): 768-774. |
[24] | 汤国安, 杨昕. 地理信息系统空间分析实验教程[M]. 北京: 科学出版社, 2006. |