全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

斜拉桥损伤可识别性传感器的优化布置方法
Optimum Sensor Placement Method for Cable-Stayed Bridges Based on Damage Identifiability

DOI: 10.3969/j.issn.0258-2724.2018.01.021

Keywords: 传感器优化布置,斜拉桥,健康监测,损伤可识别性,模态可观测性,
optimum sensor placement
,cable-stayed bridge,health monitoring,damage identifiability,modal observability

Full-Text   Cite this paper   Add to My Lib

Abstract:

为使布置在斜拉桥上的传感器识别出的模态参数对结构损伤足够敏感,从传感器优化布置的损伤可识别性要求出发,应用参数试验法和参数相关性理论,提出并得到一种包含所有单元损伤信息的节点自由度损伤信息指标,对该指标排序可获得节点自由度包含损伤信息多少的次序,即每个自由度的损伤敏感性排名,此过程无需优化迭代.在此基础上利用传感器优化布置的第1类方法继续分析,避免了迭代或优化效率低下等缺陷,可得到既满足损伤可识别性,也满足模态可观测性的传感器布置位置.在单塔双索面斜拉桥上,展示了本文方法的实现过程,与EI(effective independence)法相比,损伤信息总量:3阶时高出589;4阶时高出582;5阶时高出591.
:In order to make the modal parameters identified by the sensors on cable-stayed bridges that are sufficiently sensitive to structural damage, a damage information index of the node degree of freedom containing the damage information of all elements was proposed and obtained, considering the damage identifiability requirements for optimum sensor placement, and using the method of parameter study and parameter correlation theory. The damage information regarding the degrees of freedom of the nodes could be ordered by ranking the index, i.e. by ranking the damage sensitivity of each degree of freedom. This process did not require the use of any optimization iterative algorithm. Based on this proposal, the first such method for optimum sensor placement, which can avoid defects such as inefficient iterations and optimization, could be analysed. Finally, the location of the sensor, which could provide satisfactory damage identifiability and modal observability, was obtained. The feasibility of the proposed method was demonstrated using a single-tower double-cable-plane cable-stayed bridge. A comparison of the results with those obtained using the EI method (effective independence method) revealed that the total damage information obtained using the proposed method is greater by factors of 589, 582, and 591 for the 3rd, 4th, and 5th orders, respectively

References

[1]  吴向男,徐岳,梁鹏,等. 桥梁结构损伤识别研究现状与展望[J]. 长安大学学报:自然科学版,2013,33(6):49-58.WU Xiangnan, XU Yue, LIANG Peng, et al. Research status and prospect of bridge structure damage identification[J]. Journal of Chang'an University:Natural Science Edition, 2013, 33(6):49-58.
[2]  孙小猛,冯新,周晶. 基于损伤可识别性的传感器优化布置方法[J]. 大连理工大学学报,2010,50(2):264-270.SUN Xiaomeng, FENG Xin, ZHOU Jing. A method for optimum sensor placement based on damage identifiability[J]. Journal of Dalian University of Technology, 2010, 50(2):264-270.
[3]  伊廷华,张旭东,李宏男. 基于分布式猴群算法的传感器优化布置方法研究[J]. 工程力学,2014,31(3):93-100.YIN Tinghua, ZHANG Xudong, Li Hongnan. Distributed monkey algorithm for optimal sensor placement[J]. Engineering Mechanics, 2014, 31(3):93-100.
[4]  刘国华,吴志根. 引入信息熵理论的砼结构损伤动力识别新思路[J]. 振动与冲击,2011,30(6):162-171.LIU Guohua, WU Zhigen. New thought on dynamic identification technology for damage detection of RC structures by introducing information entropytheory[J]. Journal of Vibration and Shock, 2011, 30(6):162-171.
[5]  杨伟,孙利民. 针对结构易损场景监测的传感器优化布置方法[J]. 同济大学学报:自然科学版,2015,43(11):1670-1676.YANG Wei, SUN Limin. Optimal sensor placement for monitoring structural vulnerable scenarios[J]. Journal of Tongji University:Natural Science, 2015, 43(11):1670-1676.
[6]  赵建华,张陵,孙清. 利用粒子群算法的传感器优化布置及结构损伤识别研究[J]. 西安交通大学学报,2015,49(1):79-85.ZHAO Jianhua, ZHANG Ling, SUN Qing. Optimal placement of sensors for structural damage identification using improved particle swarm optimization[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):79-85.
[7]  相阳,罗永峰,廖冰, 等. 球面网壳地震动输入与振型响应的相关性[J]. 浙江大学学报:工学版, 2016,50(6):1040-1047.XIANG Yang, LUO Yongfeng, LIAO Bing, et al. Correlation between seismic input and modal response of spherical latticed shell[J]. Journal of Zhejiang University:Engineering Science, 2016, 50(6):1040-1047.
[8]  马建,孙守增,杨琦,等. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报,2014,27(5):1-96.MA Jian, SUN Shouzeng, YANG Qi, et al. Review on China's bridge engineering research:2014[J]. China Journal of Highway and Transport, 2014, 27(5):1-9.
[9]  江祥林,程高. 基于EfI法的桥梁模态测试中传感器优化布置[J]. 桥梁建设,2012,42(2):59-65.JIANG Xianglin, CHENG Gao. Optimal sensor placement for bridge modal testing based on efi method[J]. Bridge Construction, 2012, 42(2):59-65.
[10]  唐勇,陈志坚. 大型群桩基础安全监测传感器选型优化[J]. 西南交通大学学报,2011,42(2):247-251.TANG Yong, CHEN Zhijian. Sensor selection optimizaion for monitoring system of large-scale group-pile foundation[J]. Journal of Southwest Jiaotong University, 2011, 42(2):247-251.
[11]  张明金,李永乐,余显全,等. 桥塔上风传感器安装位置对测量结果的影响[J]. 西南交通大学学报,2015,50(4):617-662.ZHANG Mingjin, LI Yongle, YU Xianquan, et al. Influence of wind sensor location on bridge tower on measurement result[J]. Journal of Southwest Jiaotong University, 2015, 50(4):617-662.
[12]  蒲黔辉,秦世强,施洲,等. 环境激励下钢筋混凝土拱桥模态参数识别[J]. 西南交通大学学报,2012,47(4):539-545.PU Qianhui, QIN Shiqiang, SHI Zhou, et al. Modal parameter identification of reinforced concrete arch bridge under ambient excitation[J]. Journal of Southwest Jiaotong University, 2012, 47(4):539-545.
[13]  刘江南,洪义海. 三轴数控平面磨床几何精度分析与稳健设计[J]. 湖南大学学报:自然科学版,2016,43(4):1-8.LIU Jiangnan, HONG Yiha. Analysis and robust design of geometric accuracy of a three-axis CNC surface grinding machine[J]. Journal of Hunan University:Natural Sciences, 2016, 43(4):1-8.
[14]  MOORE E Z, MURPHY K D, NICHOLS J M. Optimized sensor placement for damage parameter estimation:experimental results for a cracked plate[J]. Structural Health Monitoring, 2013, 12(3):197-206.
[15]  单德山,王振华,李乔. 大跨度铁路钢桁斜拉桥传感器优化布置[J]. 土木建筑与环境工程,2011,33(增刊1):156-160.SHAN Deshan, WANG Zhenhua, LI Qiao. Optimal sensors placement for long-span railway steel truss cable-stayed bridge[J]. Journal of Civil,Architectural & Environmental Engineering, 2011, 33(S1):156-160.
[16]  单德山,孙松松,黄珍,等. 基于试验数据的吊拉组合模型桥梁有限元模型修正[J]. 土木工程学报,2014,47(10):88-95.SHAN Deshan, SUN Songsong, HUANG Zhen, et al. Finite element model updating of combined cable-stayed suspension model bridge based on experimental data[J]. China Civil Engineering Journal, 2014, 47(10):88-95.
[17]  LI B B, LI D S, ZHAO X F, et al. Optimal sensor placement in health monitoring of suspension bridge[J]. Science China:Technology Sciences, 2012, 55(7):2039-2047.
[18]  LIU W, GAO W C, SUN Y, et al. Optimal sensor placement for spatial lattice structure based on genetic algorithms[J]. Journal of Sound and Vibration, 2008, 317:175-189.
[19]  王海龙,刘杰,王新敏,等. 建立斜拉桥基准有限元模型的新方法与实现[J]. 振动·测试与诊断,2014,34(3):458-462.WANG Hailong, LIU Jie, WANG Xinmin, et al. A new method and it's implementation of building baseline FE model of cable-stayed bridge[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(3):458-462.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133