全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

结构动力学中的广义多步显式积分算法
Generalized Multi-step Explicit Integration Method in Structural Dynamics

DOI: 10.3969/j.issn.0258-2724.2017.01.019

Keywords: 结构动力学,显式积分算法,数值算法,稳定性,精度,
structural dynamics
,explicit integration method,numerical method,stability,accuracy

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了开发新的时间积分算法,通过对独立变量加速度的加权,提出了广义多步显式积分算法(GMEM).首先,在加速度显式法的基础上给出了通用的积分格式;其次,分析了所提算法的稳定性、数值耗散、数值色散和精度;最后,通过2个算例对3个广义多步显式积分算法(GMEM1、GMEM2和GMEM3-2)以及HHT-α法和Newmark法进行了对比分析.分析结果表明:本文所提算法是条件稳定的,在无阻尼系统中谱半径恒等于1;3步广义多步显式法最高具有3阶精度,在无阻尼系统中不存在数值耗散;GMEM2的均方根误差约为Newmark法的1/2,约为GMEM3-2的1.8倍.
: In order to develop new time integration algorithms, a generalized multi-step explicit integration method (GMEM) was proposed by means of weighting independent variables, accelerations. Firstly, a general integration format was provided based on the acceleration explicit method. Furthermore, the stability, numerical dissipation, numerical dispersion and accuracy were analyzed. Finally, two numerical examples were employed to contrastively analyze three kinds of GMEMs (GMEM1, GMEM2 and GMEM3-2), the HHT-α method and the Newmark method. The results indicate that the GMEM is conditionally stable. The spectral radius is identically equal to 1 in the system without damping. The GMEM of three steps can achieve the highest accuracy of three order. There is not numerical dissipation for the GMEM of three steps in undamped systems. The root mean square error of the GMEM2 is approximately half of that of the Newmark method, and 1.8 times that of the GMEM3-2 approximately

References

[1]  ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical in Engineering, 1996, 39:4199-4214.
[2]  ZHONG W X, WILLIAMS F W. A precise time step integration method[J]. Journal of Mechanical Engineering Science, 1994, 208:427-430.
[3]  吕和祥,于洪洁,裘春航. 精细积分的非线性动力学积分方程及其解法[J]. 固体力学学报,2001,22(3):303-308. Lü Hexiang, YU Hongjie, QIU Chunhang. An integral equation of nonlinear dynamics and its solution method[J]. Acta Mechanica Solida Sinica, 2001, 22(3):303-308.
[4]  杨超,肖守讷,鲁连涛. 基于双步长的显式积分算法[J]. 振动与冲击,2015,34(1):29-32. YANG Chao, XIAO Shoune, LU Liantao. Explicit integration algorithm based on double time steps[J]. Journal of Vibration and Shock, 2015, 34(1):29-32.
[5]  杨超,肖守讷,阳光武,等. 一类非耗散的显式时间积分方法[J]. 振动工程学报,2015,28(3):441-448. YANG Chao, XIAO Shoune, YANG Guangwu, et al. Non-dissipative explicit time integration methods of the same class[J]. Journal of Vibration Engineering, 2015, 28(3):441-448.
[6]  HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of Aeronautical Sciences, 1950(17):540-550.
[7]  邵慧萍,蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报,1988,5(4):76-81. SHAO Huiping, CAI Chengwen. A three parameters algorithm for numerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5(4):76-81.
[8]  LEONTIEV V A. Extension of LMS formulations for L-stable optimal integration methods with U0-V0 overshoot properties in structural dynamics:the level-symmetric (LS) integration methods[J]. International Journal for Numerical Methods in Engineering, 2007, 71(13):1598-1632.
[9]  CHANG S Y. A new family of explicit methods for linear structural dynamics[J]. Computers & Structures, 2010, 88(11/12):755-772.
[10]  PARK K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics, 1975, 42(2):464-470.
[11]  CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-αmethod[J]. Journal of Applied Mechanics, 1993, 60(2):371-375.
[12]  ZHAI W M, WANG K Y, CAI C B. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11):1349-1376.
[13]  翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社,2011:107-124.
[14]  CHANG S Y. A family of noniterative integration methods with desired numerical dissipation[J]. International Journal for Numerical Methods in Engineering, 2014, 100(1):62-86.
[15]  侯博文,高亮,刘启宾. 重载车辆-道岔耦合动力特性及岔区加强研究[J]. 西南交通大学学报,2015,50(4):604-609. HOU Bowen, GAO Liang, LIU Qibin. Vehicle-turnout coupled dynamics and improvement measures for heavy haul lines[J]. Journal of Southwest Jiaotong University, 2015, 50(4):604-609.
[16]  张雄,王天舒. 计算动力学[M]. 北京:清华大学出版社,2007:147-155.
[17]  CHANG S Y. An explicit method with improved stability property[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8):1100-1120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133