全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于时频域特征分析的列车轴承缺陷实时检测
Real-time Detection of Defects in Train Bearings Based on Analysis of Signal Characteristics in Time-Frequency Domains

DOI: 10.3969/j.issn.0258-2724.2017.06.019

Keywords: 列车轴承,缺陷,实时检测,时频域特征,
train bearing
,defect,real-time detection,time and frequency domain features

Full-Text   Cite this paper   Add to My Lib

Abstract:

为对列车轴承状态的实时监测和缺陷的快速诊断,提出了一种基于时频域特征分析的检测方法.该方法结合时域特征分析和基于小波变换的共振解调法,建立包括传感器数据采集模块、异音诊断模块、数据存储和输出模块的列车轴承缺陷实时检测系统.利用该系统分别对正常轴承、内圈缺陷轴承以及滚子缺陷轴承进行了现场测试.结果表明:时域特征分析可初步诊断出轴承是否存在缺陷;基于小波变换的共振解调方法提取列车轴承其内圈缺陷频率为35 Hz,滚子缺陷频率为23 Hz,验证了该实时检测系统的稳定性和可靠性.
:To realize the real-time monitoring and quick diagnosis of defects in rolling trainbearings, an approach is proposed based on the time and frequency analysis of signal characteristics, especially the combination of time-domain characteristics analysis and resonance demodulation based on wavelet transforms. A real-time detection system is set up for detecting train bearing defects including a sensor data acquisition module, a sound diagnostic module, data storage and an output module. The following tests for bearings were conducted for comparisonnormal bearings, bearings with inner-ring defects, and bearings with inner-ring and roller defects. The results showed that the analysis of time-domain characteristics can be used to determine bearings were faulty prior to operation. The resonance demodulation based on wavelet transform extracted the inner-ring defect frequency and the roller defect frequency of 35 Hz and 23 Hz, respectively. The stability and reliability of the real-time detection system are verified

References

[1]  刘建强,魏远乐,胡辉. 高速列车节能运行优化控制方法研究[J]. 铁道学报,2014,36(10):7-12. LIU Jianqiang, WEI Yuanle, HU Hui. Research on optimization control method of energy-saving operation of high-speed trains[J]. Journal of China Railway Society, 2014, 36(10):7-12.
[2]  朱德馨,刘宏昭,原大宁,等. 高速列车轴承可靠性试验时间的确定及可靠性寿命评估[J]. 中国机械工程,2014,25(21):2886-2891. ZHU Dexin, LIU Hongzhao, YUAN Daning, et al. Time determination and life assessment of high-speed railway bearing reliability test[J]. China Mechanical Engineering, 2014, 25(21):2886-2891.
[3]  衷路生,李兵,龚锦红,等. 高速列车非线性模型的极大似然辨识[J]. 自动化学报,2014,40(12):2950-2958. ZHONG Lusheng, LI Bing, GONG Jinhong, et al. Maximum likelihood identification of nonlinear model for high-speed train[J]. Acta AutomaticaSinica, 2014, 40(12):2950-2958.
[4]  JOSEPH J, VENKATARAMAN J. A virtual instrument for automated measurement of arterial compliance[J]. Journal of Medical Devices, 2010, 4(4):593-609.
[5]  苏敏,王勇,何惜港,等. 基于LabVIEW的滚动轴承故障诊断系统[J]. 轴承,2010(9):41-44. SU Ming, WANG Yong, HE Xigang, et al. Fault diagnosis system of rollingbearings based on LabVIEW[J]. Bearing, 2010(9):41-44.
[6]  杜娟,邱晓晖,赵阳,等. 基于LabVIEW的数据采集与信号处理系统的设计[J]. 南京师范大学学报,2010,10(3):7-10. DU Juan, QIU Xiaohui, ZHAO Yang, et al. Data acquisition and signal processing system based on LabVIEW[J]. Journal of Nanjing Normal University, 2010, 10(3):7-10.
[7]  HOWARD I. A review of rolling element bearing vibration detection, diagnosis and prognosis[M].[S.l.]:Defense Science and Technology Organization, 1994:26-27.
[8]  张国远. 基于PC机的滚动轴承自动检测与故障诊断系统[D]. 杭州:浙江大学, 2005.
[9]  张卫华,李艳,宋冬利. 高速列车运动稳定性设计方法研究[J]. 西南交通大学学报,2013,48(1):1-9. ZHANG Weihua, LI Yan, SONG Dongli. Design methods for motion stability of high-speed trains[J]. Journal of Southwest Jiaotong University, 2013, 48(1):1-9.
[10]  马伦,康建设,孟研,等. 基于Morlet小波变换的滚动轴承早期故障特征提取研究[J]. 仪器仪表学报,2013,34(4):920-925. MA Lun, KANG Jianshe, MENG Yan, et al. Research on feature extraction of rolling bearing incipient faultbased on Morlet wavelet transform[J]. Chinese Journal of Scientific Instrument, 2013, 34(4):920-925.
[11]  郝如江,卢文秀,褚福磊. 形态滤波在滚动轴承故障声发射信号处理中的应用[J]. 清华大学学报:自然科学版,2008,48(5):812-815. HAO Rujiang, LU Wenxiu, CHU Fulei. Morphology filters for analyzing roller bearing fault using acoustic emission signal processing[J]. Journal of Tsinghua University:Science and Technology, 2008, 48(5):812-815.
[12]  王国栋,黎敏,阳建宏,等. 基于特征波形稀疏匹配的滚动轴承故障模式识别[J]. 北京科技大学学报,2010,32(3):390-396. WANG Guodong, LI Min, YANG Jianhong, et al. Fault pattern recognition of rolling bearings based on characteristic waveform sparsematching[J]. Journal of University of Science and Technology Beijing, 2010, 32(3):390-396.
[13]  李修文,阳建宏,黎敏,等. 基于频域形态滤波的低速滚动轴承声发射信号降噪新方法[J]. 振动与冲击,2013,32(1):65-68. LI Xiuwen, YANG Jianhong, LI Min, et al. A new de-noising method for acoustic emission signal of rolling bearings with low speed based on morphological filtering in frequency domain[J]. Journal of Vibration and Shock, 2013, 32(1):65-68.
[14]  永远. 传感器原理及检测技术[M]. 北京:科学出版社,2013:467-469.
[15]  ZHANG Ping, LI Kun, SUN Xiaoshu, et al. Design and application of virtual instrument detection system for aerodynamic instrument[J]. Advanced Materials Research, 2012, 508:166-169.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133