|
- 2017
大跨度高速铁路劲性骨架混凝土拱桥模型试验研究
|
Abstract:
沪昆高铁北盘江特大桥为主跨445 m的劲性骨架钢筋混凝土拱桥,桥面拟铺设无砟轨道,设计时速350 km/h,因此,对桥梁的受力和变形性能提出了很高的要求.为了验证实桥施工过程中的安全性和劲性骨架外包混凝土施工方法的合理性,对全桥进行了1:7.5的缩尺模型试验研究,对模型的加载方法、控制截面和测点的布置进行了探讨,并将模型的试验结果与计算结果进行对比,全面了解该桥在施工过程中及成桥状态下的受力行为,研究结果表明:劲性骨架施工过程中,钢管最大应力250 MPa,位于1/2截面上弦杆处;主拱圈C60外包混凝土最大压应力为17 MPa,位于1/2截面边箱底板处;主拱圈最大位移为68 mm,出现在1/2截面附近;应力和位移均满足与原桥的应力等效和几何相似关系,模型试验结果均满足原桥施工过程中应力和变形的要求.
:The Beipanjiang bridge is a 445 m concrete arch reinforced rigid skeleton bridge on the high-speed railway from Shanghai to Kunming. The bridge deck is designed to comply with design rail speeds of 350 km/h and subsequently requires strictly controlled stresses and deformation for this ballast-less track. To verify the safety of the bridge during construction and in service and to rationalise the use of outsourced concrete construction methods, a 17.5 scaled model based on the prototype bridge was constructed. The loading method and arrangement of control sections and measuring points are discussed. Comparing the test results and computed results provides a comprehensive understanding of the mechanical behavior of the bridge. The results indicate that the maximum stress of the steel tube is 250 MPa, located at the upper chord of 1/2 cross section and the maximum stress of the C60 outsourced concrete is 17 MPa, located at the side-box bottom of the half cross section, whilst the maximum displacement of the arch ring is 68 mm, also positioned at the half cross section. Considering the stress equivalent and geometric similarity principles, the comparative results indicate that the stress and displacement of the model bridge align with the design parameters of the prototype. Model test results prove that the stress and deformation of the prototype bridge can meet the requirements during construction
[1] | 李乔,田学民,张清华. 铁路大跨度提篮式系杆拱桥全桥模型试验[J]. 中国铁道科学,2003,24(1):88-92. LI Qiao, TIAN Xuemin, ZHANG Qinghua. A model test on long-span x-style arch bridge on railway[J]. China Railway Science, 2003, 24(1):88-92. |
[2] | ICHINOSE L H, WATANABE E, NAKAI H. An experimental study on creep of concrete filled steel pipes[J]. Journal of Constructional Steel Research, 2001, 57(4):453-466. |
[3] | 顾安邦,刘忠,周水兴. 万县长江大桥混凝土时效和几何、材料等非线性因素影响分析[J]. 重庆交通学院学报,1999,18(44):1-7. GU Anbang, LIU Zhong, ZHOU Shuixing. Analysis of time dependent effects of concrete and geometrical nonlinearities, material nonlinearities of Wanxian Yangtze River bridge[J]. Journal of Chongqing Jiaotong Institute, 1999, 18(44):1-7. |
[4] | 结构工程试验中心拱桥课题组. 万县长江大桥钢筋混凝土拱模型试验研究[J]. 西南交通大学学报,1994,29(4):362-367. Structural Engineering Test Center Arch Bridge Research Group. Reinforced concrete arch model Test research of wanxian yangtze river bridge[J]. Journal of Southwest Jiaotong University, 1994, 29(4):362-367. |
[5] | 李晓斌,杨永清,蒲黔辉,等. 钢筋混凝土拱桥悬臂浇筑施工模型试验研究[J]. 西南交通大学学报,2007,42(5):526-530. LI Xiaobin, YANG Yongqing, PU Qianhui, et al. Model test of cantilever cashing construction of reinforced concrete arch bridge[J]. Journal of Southwest Jiaotong University, 2007, 42(5):526-530. |
[6] | 范亮,龚尚龙,陈思甜. 特大跨径钢桁拱桥施工过程模型试验[J]. 西南交通大学学报,2010,45(4):502-507. FAN Liang, GONG Shanglong, CHEN Sitian. Model experiment of construction process of long-span steel truss bridge[J]. Journal of Southwest Jiaotong University, 2010, 45(4):502-507. |
[7] | 胡志坚,张明辉,孔祥韶,等. 大跨度钢桁架拱桥静动力相似模型[J]. 中国公路学报,2014,27(9):82-89. HU Zhijian, ZHANG Minghui, KONG Xiangshao, et al. Static and dynamic experimental model for long-span steel-truss arch bridge[J]. China Journal of Highway and Transport, 2014, 27(9):82-89. |
[8] | 谢海清. 特大跨度铁路劲性骨架混凝土拱桥结构选型及关键力学问题研究[D]. 成都:西南交通大学,2012. |
[9] | 郑皆连. 特大跨径PC拱桥悬拼合拢技术的探讨[J]. 中国公路学报,1999,1:41-48. ZHENG Jielian. Discussion on technology of suspending and connecting for the RC bridge with an unusual big span[J]. China Journal of Highway and Transport, 1999, 1:41-48. |
[10] | 刘爱荣,张俊平,赵新生,等. 中山一桥模型试验及理论分析[J]. 中国公路学报,2005,18(3):75-79. LIU Airong, ZHANG Junping, ZHAO Xinsheng, et al. Model test of the first zhongshan bridge and theoretical analysis[J]. China Journal of Highway and Transport, 2005, 18(3):75-79. |
[11] | UY B. Static long-term effects in short concrete-filled steel box columns under sustained loading[J]. Aci Structural Journal, 2001, 98(1):96-104. |
[12] | NEVILLE A M, DILGER W H, BROOKS J J. Creep of plain and structural concrete[M]. London and New York:Construction Press, 1983:194-199. |
[13] | 崔军,孙炳楠,楼文娟. 钢管混凝土桁架拱桥模型试验研究[J]. 工程力学,2004,21(5):83-86. CUI Jun, SUN Bingnan, LOU Wenjuan. Model test study on concrete filled steel-tube arch bridge[J]. Engineering Mechanics, 2004, 21(5):83-86. |
[14] | 陈宝春,赖秀英. 钢管混凝土收缩变形与钢管混凝土拱收缩应力[J]. 铁道学报,2016,38(2):112-123. CHEN Baochun, LAI Xiuying. Shrinkage deformation of concrete filled steel tube and shrinkage stress of concrete filled steel tubular arch[J]. Journal of the China Railway Society, 2016, 38(2):112-123. |
[15] | BAZANTZ P. Prediction of concrete creep and shrinkage:past, present and future[J]. Nuclear Engineering and Design, 2001, 203(1):27-38. |