全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

受火冷却后钢管混凝土叠合短柱的轴压力学性能
Axially Loaded of Concrete-Encased Concrete Filled Steel Tubular Stub Columns after Fire

DOI: 10.3969/j.issn.0258-2724.2017.06.018

Keywords: 承载力,钢管混凝土,火灾,钢筋混凝土,
bearing capacity
,concrete filled steel tubular,fire,reinforced concrete

Full-Text   Cite this paper   Add to My Lib

Abstract:

为掌握受火冷却后钢管混凝土叠合短柱的轴压破坏机理和力学性能,基于试验研究和有限元模拟,分析了叠合短柱的破坏模式、轴压极限承载力和轴向刚度.考虑截面形状、钢管尺寸和长细比3个参数的变化,完成了8根叠合短柱在ISO-834升温曲线作用下的受火试验和受火冷却后的轴压承载力试验,并采用ABAQUS进行了非线性有限元模拟.研究结果表明:与钢筋混凝土短柱相似,受火冷却后叠合短柱的破坏模式为受压破坏;与常温时相比,受火180 min冷却后,叠合短柱的轴压极限承载力下降27.4%~38.2%,轴向刚度下降61.4%~69.0%;当受火时间和钢管尺寸均相同时,钢管外部钢筋混凝土结构层增大1.53倍厚度,受火冷却后圆形叠合短柱的轴压承载力和轴向刚度降幅分别下降8.4%和1.3%,方形叠合短柱的轴压承载力和轴向刚度降幅分别下降5.8%和4.1%;与模拟值相比,提出的简化计算方法计算的轴压极限承载力偏差的平均值和标准差分别为4.9%和5.3,计算的轴向刚度偏差的平均值和标准差分别为13.8%和9.8.
:In order to investigate the failure mechanism and structural performance of axially loaded concrete-encased concrete filled steel tubular (CFST) stub columns after fire exposure, the failure mode, axial compression ultimate bearing capacity and axial stiffness of concrete-encased CFST stub columns were analyzed based on experimental study and finite element model (FEM) simulation. A total of 8 concrete-encased CFST stub columns specimens with different cross-section types, steel tube dimension and slenderness ratios were tested after fire exposure, and the nonlinear FEM simulation was carried out by ABAQUS software. The results show that compressive failure modes are observed for concrete-encased CFST stub columns, which is similar to reinforced concrete stub columns. Compared to a specimen at ambient temperature, the drop of axial compression ultimate bearing capacity of concrete-encased CFST stub columns is about 27.4%-38.2%, and the drop of stiffness is about 61.4%-69.0%. When the fire exposure time and the size of the specimens are the same, and the thickness of the reinforced concrete cover improve to 1.53 times, the rate of decline of axial compression ultimate bearing capacity and axial stiffness for circular specimens are 8.4% and 1.3%, respectively, and for the square specimens, the rate of decline of axial compression ultimate bearing capacity and axial stiffness are 5.8% and 4.1%, respectively. Compared with the FEM simulation results, the mean and standard deviation of simplified method of calculation error are 4.9% and 5.3 for axial compression ultimate bearing capacity, the mean and standard deviation of axial stiffness calculation error are 13.8% and 9.8

References

[1]  清华大学,辽宁省建筑设计研究院. CECS 188:2005钢管混凝土叠合柱结构技术规程[S]. 北京:中国计划出版社,2005.
[2]  HAN Linhai, YANG Youfu, YANG Hua, et al. Residual strength of concrete-filled RHS columns after exposure to the ISO-834 standard fire[J]. Thin-Walled Structures, 2002, 40(12):991-1012.
[3]  韩林海,宋天诣. 钢-混凝土组合结构抗火设计原理[M]. 北京:科学出版社,2012:26-32.
[4]  LIU F Q, GARDNER L, YANG H. Post-fire behaviour of reinforced concrete stub columns confined by circular steel tubes[J]. Journal of Constructional Steel Research, 2014, 102:82-103.
[5]  李俊华,唐跃峰,刘明哲. 火灾后型钢混凝土柱受力性能试验研究[J]. 建筑结构学报,2012,33(2):56-63. LI Junhua, TANG Yuefeng, LIU Mingzhe. Experimental study on mechanical properties of steel reinforced concrete columns after exposure to fire[J]. Journal of Building Structures, 2012, 33(2):56-63.
[6]  NG K T, GARDNER L. Buckling of stainless steel columns and beams in fire[J]. Engineering Structures, 2007, 29(5):717-730.
[7]  HAN Linhai, HUO Jingsi, WANG Yongchang. Compressive and flexural behaviour of concrete filled steel tubes after exposure to standard fire[J]. Journal of Constructional Steel Research, 2005, 61(7):882-901.
[8]  YANG H, LIU F Q, GARDNER L. Post-fire behaviour of slender reinforced concrete columns confined by circular steel tubes[J]. Thin-Walled Structures, 2015, 87:12-29.
[9]  JAU W C, HUANG K L. A study of reinforced concrete corner columns after fire[J]. Cement & Concrete Composites, 2008, 30:622-638.
[10]  吴波, 李毅海. 轴向约束钢筋混凝土柱火灾后剩余轴压性能的试验研究[J]. 土木工程学报,2010,43(4):85-91. WU Bo, LI Yihai. Experimental study of the residual axial behavior of axially restrained reinforced concrete columns after fire[J]. China Civil Engineering Journal, 2010, 43(4):85-91.
[11]  侯进学,毛小勇. 考虑升降温作用的高温后型钢混凝土偏压柱受力性能试验研究[J]. 苏州科技学院学报:工程技术版,2010,23(4):21-25. HOU Jinxue, MAO Xiaoyong. An experimental investigation on behavior of eccentric compression SRC columns after fire with heating-cooling effect[J]. Journal of Suzhou University of Science and Technology:Engineering and Technology, 2010, 23(4):21-25.
[12]  谭清华,韩林海,周侃. 火灾下型钢混凝土柱的受力全过程分析[J]. 防灾减灾工程学报,2015,35(1):63-68. TAN Qinghua, HAN Linhai, ZHOU Kan. Full-range analysis of steel reinforced concrete column subjected to fire[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(1):63-68.
[13]  唐跃锋,刘明哲,于长海,等. 火灾后钢筋混凝土柱剩余承载力研究[J]. 宁波大学学报:理工版,2011,24(4):112-115. TANG Yuefeng, LIU Mingzhe, YU Changhai, et al. Experimental study on residual load bearing capacity of reinforced concrete columns after exposure to fire[J]. Journal of Ningbo University:NSEE, 2011, 24(4):112-115.
[14]  HUO Jingsi, ZHANG Jiaguang, WANG Zhiwei, et al. Effects of sustained axial load and cooling phase on post-fire behaviour of reinforced concrete stub columns[J]. Fire Safety Journal, 2013, 59:76-87.
[15]  Eurocode 2. EN 1992-1-2:2004 Design of concrete structures-Part 1-2:General rules-Structural fire design[S]. Brussels:European Committee for Standardization, 2004.
[16]  Eurocode 3. EN 1993-1-2:2005 Design of steel structures-Part 1-2:General rules-Structural fire design[S]. Brussels:European Committee for Standardization, 2005.
[17]  GHOJEL J. Experimental and analytical technique for estimating interface thermal conductance in composite structural elements under simulated fire conditions[J]. Experimental Thermal and Fluid Science, 2004, 28(4):347-354.
[18]  吴波. 火灾后钢筋混凝土结构的力学性能[M]. 北京:科学出版社,2003:47-62.
[19]  林立岩,李庆钢. 钢管混凝土叠合柱的设计概念与技术经济性分析[J]. 建筑结构,2008,38(3):17-21. LIN Liyan, LI Qinggang. Design concept and analysis of technical economy for steel tube-reinforced concrete column[J]. Building Structure, 2008, 38(3):17-21.
[20]  冯颖慧,沈陶,楼文娟,等. 内配圆钢管的钢骨混凝土柱火灾后剩余承载力研究[J]. 工业建筑,2008,38(3):16-19. FENG Yinghui, SHEN Tao, LOU Wenjuan, et al. The study of residual load bearing of column reinforced by inner circular steel tube after fire[J]. Industrial Construction, 2008, 38(3):16-19.
[21]  周君. 钢骨混凝土核心柱温度场及高温后剩余承载力性能研究[J]. 特种结构,2009,26(4):35-39. ZHOU Jun. The study of temperature distribution of column reinforced by inner circular steel tube and residual axial force of the column after fire[J]. Special Structures, 2009, 26(4):35-39.
[22]  Eurocode 1. EN 1991-1-2:2002 Actions on structure-part 1-2:general actions-actions on structures exposed to fire[S]. Brussels:European Committee for Standardization, 2002.
[23]  HAN Linhai, HUO Jingsi. Concrete-filled hollow structural steel columns after exposure to ISO-834 fire standard[J]. Journal of Structural Engineering, 2003, 129(1):68-78.
[24]  HUO Jingsi, HUANG Guowang, XIAO Yan. Effects of sustained axial load and cooling phase on post-fire behaviour of concrete-filled steel tubular stub columns[J]. Journal of Constructional Steel Research, 2009, 65(8/9):1664-1676.
[25]  林晓康. 火灾后钢管混凝土压弯构件的滞回性能研究[D]. 福州:福州大学,2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133