|
- 2017
轨道车辆轮对状态与线路特征的估计
|
Abstract:
为了方便、经济地获取轨道车辆轮对主动控制系统的轮对状态和线路特征信息,提出基于状态观测器的信息估计技术方案,实现了轮对状态和未知线路特征信息的共同估计.该技术方案使用惯性传感器(加速度计和陀螺仪)测得轮对摇头速度和横向加速度信号.应用该技术方案对典型的单个独立旋转车轮模型进行仿真验证.结果表明:由降维观测器和高阶滑模观测器组成的估计系统,估计效果优,不受轨道不平顺的影响,轮对状态估计误差小于0.10%;在理想线路上,线路曲率和超高信息的估计偏差在圆曲线上分别不超过0.26%和13.40%;有轨道不平顺输入的实际线路,曲率估计偏差不超过9.10%;在实际应用该技术方案时需去除滤波器波动误差.
: In order to get the wheelset state and track feature used for rail vehicle wheelset active control in an easy and economical way, an information estimation scheme based on state observers is proposed to simultaneously estimate the wheelset state and unknown track feature. The scheme obtains wheelset yaw velocity and lateral acceleration signal using some inertia sensors (accelerator and gyros). In addition, a single independent rotating wheelset model is set up to simulate and verify the proposed estimation scheme. Simulations show that the estimation system using a reduced order observer and a higher-order sliding mode observer presents good estimating performance, and is hardly affected by track irregularity. Errors of wheelset state estimation are less than 0.10%. In the ideal track, the error of the estimated track curvature and superelevation in curved track is no more than 0.26% and 13.40%, respectively. In the real track with irregularity, the error of the estimated track curvature is no more than 9.10%, but the filter fluctuation error should be removed when using this scheme in practical applications
[1] | LI H. Non-linear Kalman filter estimation for active steering of profiled rail-wheels[J]. World Congress, 2002, 35(1): 91-96. |
[2] | 杨俊起,朱芳来. 状态估计与未知输入和可测噪声同时重构方法[J]. 控制与决策,2013,23(8): 1145-1151. YANG Junqi, ZHU Fanglai. State estimation and simultaneous unknown input and measurement noise reconstruction[J]. Control and Decision, 2013, 23(8): 1145-1151. |
[3] | 孙效杰. 独立车轮电气耦合转向架关键技术研究[D]. 上海:同济大学2014. |
[4] | 任利惠,周劲松,沈钢. 一种基于转速反馈的独立轮对的主动导向控制方法[J]. 中国铁道科学,2006,27(1): 90-93. REN Lihui, ZHOU Jinsong, SHEN Gang. Approach of active steering of independently rotating wheelsets based on feedback of wheels rotation speed[J]. China Railway Science, 2006, 27(1): 90-93. |
[5] | 孙效杰,陆正刚,张劲. 盘式永磁同步电机直接驱动独立车轮及导向控制技术[J]. 中国铁道科学,2013,34(6): 93-98. SUN Xiaojie. LU Zhenggang, ZHANG Jin. Disc PMSM directly driven independently rotating wheels and steering control method[J]. China Railway Science. 2013, 34(6): 93-98. |
[6] | MEI T X, LI H, GOODALL R. Kalman filters applied to actively controlled railway vehicle suspensions[J]. Transactions of the Institute of Measurement and Control, 2001, 23(3): 163-181. |
[7] | LU Z, SUN X, ZHANG J. Design and control of disc PMSM directly driven wheel for tramcar[J]. Advances in Mechanical Engineering, 2014, 6(1): 74763. |
[8] | 王雪梅,倪文波,李芾. 基于陀螺平台的摆式列车线路信息检查系统研究[J]. 中国铁道科学,2004,25(1): 41-45. WANG Xuemei, NI Wenbo, LI Fu. Research on gyroscope platform based titling train railway line information inspection system[J]. China Railway Science. 2004, 25(1): 41-45. |
[9] | LI H, GOODALL R. State estimation for active steering of railway vehicles[C]//14th World Congress of IFAC'99. Beijing:[s.n.], 1999: 133-138. |
[10] | MEI T X, GOODALLR M. Practical strategies for controlling railway wheelsets independently rotating wheels[J]. Journal of Dynamic Systems, Mmeasurement, and Control, 2003, 125(3): 354-360. |
[11] | 孙效杰,陆正刚,张劲. 低地板有轨电车用盘式永磁电机直驱技术[J]. 同济大学学报:自然科学版,2014,42(8): 1245-1250. SUN Xiaojie. LU Zhenggang, ZHANG Jin. Disc PMSM direct drive for low floor tramcar[J]. Journal of Tongji University: Natural Science, 2014, 42(8): 1245-1250. |
[12] | 王雪梅,林建辉,李芾,等. 摆式列车线路信息检测系统动态补偿[J]. 西南交通大学学报, 2005,40(5): 628-632. WANG Xuemei, LIN Jianhui, LI Fu, et al. Dynamic compensation for railway line information monitoring system of tilting train[J]. Journal of Southwest Jiaotong University. 2005, 40(5): 628-632. |
[13] | LI H. Measuring systems for active steering of railway vehicles[D]. Loughborough: Loughborough University, 2001. |
[14] | 陈滟涛,杨俊起,钱伟. 基于降维观测器和超螺旋算法的执行器故障重构方法[J]. 信息与控制,2013,42(5): 560-564. CHEN Yantao, YANG Junqi, QIAN Wei. Actuator fault reconstruction method based on reduce-order observer and super-twisting algorithm[J]. Information and Control, 2013, 42(5): 560-564. |