全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

隧道围岩变形及支护刚度三维分析模型研究
Three-Dimensional Analysis Model of Surrounding Rock Deformation and Support Stiffness for Tunnel Construction

DOI: 10.3969/j.issn.0258-2724.2017.04.012

Keywords: 三维分析模型,Mindlin解,Kelvin解,位移场,支护刚度,
three-dimensional analysis model
,Mindlin solution,Kelvin solution,deformation field,support stiffness

Full-Text   Cite this paper   Add to My Lib

Abstract:

鉴于既有力学模型在分析三维隧道施工力学问题时存在精度不高、计算资源要求高和计算时效不能满足工程要求等诸多困难,将隧道围岩视为半无限大或无限大弹性体,以作用于洞壁和掌子面处的等效作用力模拟隧道开挖效应,建立了一种深埋圆形隧道的三维分析模型.基于Mindlin解和Kelvin解分别推导了掌子面在洞口附近和掌子面远离洞口两种工况下围岩位移的积分计算公式,并编制了相应的计算程序,然后将待开挖介质视为"支护体",通过刚度分析将支护反力引入力学模型,推导了围岩变形的求解方程,可以快速计算隧道围岩变形场和围岩对支护结构刚度需求的量化值.研究结果表明:两种工况下围岩位移的分布规律基本一致,掌子面距离洞口较近时,隧道纵剖面围岩轴向位移最大值的解析和数值结果分别为6.1 mm和 5.5 mm,隧道横截面掌子面处径向位移最大值分别为2.4 mm和 2.6 mm,误差分别为9.8%和8.3%;在掌子面距离洞口较远的工况下,隧道纵剖面围岩轴向位移最大值分别为6.0 mm和5.7 mm,误差为 5.0%;对于任选的一组隧道围岩和支护结构参数,考虑支护反力后计算得到的围岩纵向变形与数值分析结果吻合较好,超前位移分别为3.6 mm和3.0 mm,最终位移分别为9.1 mm和8.5 mm,误差分别为16.7%和6.6%;大岗山隧道2#压力管道的超期变形的计算结果和监测结果分别为0.4 mm和0.4 mm,最终变形分别为1.0 mm和1.1 mm,误差分别为0和10%.基于变形控制标准和新建力学模型可对围岩的刚度需求进行量化计算并指导支护结构设计参数的确定.
: In the field of analyzing 3D tunnel construction mechanics, the current mechanical models have many difficulties, including low computing accuracy, high computing resource requirements, and low computing efficiency, which can't meet the practical requirements; thus, a new analysis model of a deep-buried circular tunnel was proposed with considering the equivalent force acting on the wall and the face to simulate the excavation effect. To evaluate two cases of a tunnel face near the entrance and far from it, the integral formulae of the deformation field of the surrounding rock were derived based on the Mindlin and Kelvin solutions, respectively. The paper treated the excavation medium as "support mass" and developed the formulae of surrounding rock deformation through introducing the support force into the analysis model. According to the above formulae, the deformation field of surrounding rock and the quantitative values of its demand for the support structures might be calculated. The results show that under the two cases, the deformation distribution of the surrounding rock is basically consistent; while the face is near to the entrance, the maximum calculation and numerical results of the axial displacement of the lengthwise section are 6.1 mm and 5.5 mm, and the radial displacements at the face are 2.4 mm and 2.6 mm, and the errors are 9.8% and 8.3%, respectively. When the face is far from the entrance, the maximum calculation and numerical results of the axial displacement of the lengthwise section are 6.0 mm and 5.7 mm, respectively and the error is 5.0%; for an arbitrary set of calculation parameters of surrounding rock and supporting structures, the results of advanced displacement at the face are 3.6 mm and 3.0 mm and the results of final displacement are 9.1 mm and 8.5 mm, and the errors are 16.7% and 6.6%, respectively, showing that the calculation results of

References

[1]  FANG Q, ZHANG D, ZHOU P, et al. Ground reaction curves for deep circular tunnels considering the effect of ground reinforcement[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 60: 401-412.
[2]  王华宁,李悦,骆莉莎,等. 应变软化弹塑性岩体中TBM施工过程围岩力学状态的理论分析[J]. 岩石力学与工程学报,2016,35(2): 356-368. WANG Huaning, LI Yue, LUO Lisha, et al. Analytical research of mechanical response of TBM construction in strain-softening elasto-plastic rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 356-368.
[3]  VERRUIJT A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 21(21): 77-89.
[4]  BARLA M. Stress paths around a circular tunnel[J]. Rivista Italiana di Geotecnica, 2000, 1: 53-58.
[5]  WONG H, TROMPILLE V, DIAS D. Extrusion analysis of a bolt-reinforced tunnel face with finite ground-bolt bond strength[J]. Canadian Geotechnical Journal, 2004, 41: 326-341.
[6]  李煜舲,林铭益,许文贵. 三维有限元分析隧道开挖收敛损失与纵剖面变形曲线关系研究[J]. 岩石力学与工程学报,2008,27(2): 258-265. LI Yuling, LIN Mingyi, XU Wengui. Study on relationship between convergence loss and longitudinal deformation curve in tunnel excavation by using three-dimensional finite element analysis[J]. Chines Journal of Rock Mechanics and Engineering, 2008, 27(2): 258-265.
[7]  王明年,张晓军,苟明中,等. 盾构隧道掘进全过程三维模拟方法及重叠段近接分区研究[J]. 岩土力学,2012,33(1): 273-279. WANG Mingnian, ZHANG Xiaojun, GOU Mingzhong, et al. Method of three-dimensional simulation for shield tunneling process and study of adjaceng partition of overlapped segment[J]. Rock and Soil Mechanics, 2012, 33(1): 273-279.
[8]  MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Phsics, 1953, 7(5): 195-202.
[9]  李庆阳,王能超,易大义. 数值分析[M]. 北京:清华大学出版社,2008: 103-109.
[10]  ORESTE P P. Analysis of structural interaction in tunnels using the convergence-confinement approach[J]. Tunnelling and Underground Space Technology, 2003, 18(4): 347-363.
[11]  韩凯航,张成平,王梦恕. 浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报,2014,36(12): 2253-2259. HAN Kaihang, ZHANG Chengping, WANG Mengshu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259.
[12]  张传庆,冯夏庭,周辉,等. 应力释放法在隧洞开挖模拟中若干问题的研究[J]. 岩土力学,2008,29(5): 1174-1180. ZHANG Chuanqing, FENG Xiating, ZHOU Hui, et al. Study of some problems about application of stess release method to tunnel excavation simulation[J]. Rock and Soil Mechanics, 2008, 29(5): 1174-1180.
[13]  CANTIENI L. Spatial effects in tunnelling through squeezing ground[D]. Zurich: ETH Zurich, 2011.
[14]  申艳军,徐光黎,张璐,等. 基于Hoek-Brown准则的开挖扰动引起围岩变形特性研究[J]. 岩石力学与工程学报,2010,29(7): 1355-1362. SHEN Yanjun, XU Guangli, ZHANG Lu, et al. Research on characteristics of rock deformation caused by excavation disturbance based on Hoek-Brown criterion[J]. Chines Journal of Rock Mechanics and Engineering, 2010, 29(7): 1355-1362.
[15]  潘鼎元. 隧道的空间轴对称变形计算[J]. 同济大学学报,1982(3): 98-103. PAN Dingyuan. Calculation of space axial symmetrical deformations of tunnels[J]. Journal of Tongji University, 1982(3): 98-103.
[16]  DIAS D, ORESTE P P. Key factors in the face stability analysis of shallow tunnels[J]. American Journal of Applied Sciences, 2013, 10(9): 1025-1038.
[17]  杜庆华,余寿文,姚振汉. 弹性理论[M]. 北京:科学出版社,1986: 104-106.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133