|
- 2016
含对流的渗流方程的自相似解
|
Abstract:
考虑含对流项的渗流方程〖SX(〗u〖〗t〖SX)〗=Δum+x〖WTBX〗〖DK〗·SymbolQCpuq的径向自相似解的存在性,其中,q>m>1, x〖WTBX〗〖XC152HSW1.TIF;%85%85,JZ〗〖KG1mm〗〖KX(〗R〖KX)〗〖KG-0.8mm〗N.注意到该方程具有伸缩不变性,故可考虑形如u(x,t)=t-αφ(t-β|x|)的相似解问题.对该方程建立了相似解的存在性理论,首先确立一个临界指标q*〖KG-0.5mm〗=m+2/N, 当对流项的指标q≥q*时,对任意初值A>0,都存在一个单调递减的整体解.而对于m
: 〖JP3〗The radial self-similar solutions of the following porous medium equation with convection 〖SX(〗u〖〗t〖SX)〗=Δum+x〖WTBX〗〖DK〗·SymbolQCpuq 〖JP〗where q>m>1,x〖WTBX〗〖XC152HSW1.TIF;%85%85,JZ〗〖KG1mm〗〖KX(〗R〖KX)〗〖KG-0.8mm〗N are discussed. By the invariance properties of differential equation, this form of self-similar solutions u(x,t)=t-αφ(t-β|x|) can be considered. The existence of radial self-similar solutions is studied and a critical exponent q*〖KG-0.8mm〗=m+2/N is established. That is ,if q≥q*, there exists a global decreasing solution for any initial datum A>0, while if