全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

给定团数的图的距离无符号拉普拉斯谱半径
The minimal distance signless Laplacian spectral radii of connected graphs with given clique number

Full-Text   Cite this paper   Add to My Lib

Abstract:

在本文中, 我们刻画了给定团数的连通图中取得最小距离无符号拉普拉斯谱半径的极图.
: In this paper, we characterize the extremal graph with the minimal distance signless Laplacian spectral radius among all connected graphs with given clique number

References

[1]  D. Stevanovic, A. Ilic, Distance spectral radius of trees with xed maximumdegree, Electron. J. Linear Algebra. 20 (2010) 168-179.
[2]  Z.Z. Liu, On spectral radius of the distance matrix, Appl. Anal. Discrete Math.4 (2010) 269-277.
[3]  X.L. Zhang, C. Godsil, Connectivity and minimal distance spectral radius ofgraphs, Linear and Multilinear Algebra 59 (2011) 745-754.
[4]  G.L. Yu, Y.R. Wu, Y.J. Zhang, J.L. Shu, Some graft transformations and itsapplication on a distance spectrum, Discrete Math. 311 (2011) 2117-2123.
[5]  S.S. Bose, M. Nath, S. Paul, Distance spectral radius of graphs with r pendentvertices, Linear Algebra Appl. 435 (2011) 2828-2836.
[6]  G.L. Yu, H.C. Jia, H.L. Zhang, J.L. Shu, Some graft transformations and itsapplications on the distance spectral radius of a graph, Applied MathematicsLetters 25 (2012) 315-319.
[7]  B. Bollobas, Extremal graph theory, Academic Press, London, New York, SanFrancisco, 1978.
[8]  W.J. Ning, L.Q. Ouyang, M. Lu, Distance spectral radius of trees with xednumber of pendent vertices, Linear Algebra Appl. 439 (2013) 2240-2249.
[9]  Y.Y. Chen, H.Q. Lin, J.L. Shu, Sharp upper bounds on the distance spectralradius of a graph, Linear Algebra Appli. 439 (2013) 2659-2666.
[10]  B. He, Y.L. Jin, X.D. Zhang, Sharp bounds for the signless Laplacian spectralradius in terms of clique number, Linear Algebra Appl. 438 (2013) 3851-3861.
[11]  M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph,Linear Algebra Appl. 439 (2013) 21-33.
[12]  J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.
[13]  G. Indulal, Sharp bounds on the distance spectral radius and the distance energyof graphs, Linear Algebra Appl. 430 (2009) 106-133.
[14]  W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radiusof strongly connected digraphs, Linear Algebra Appl. 457 (2014) 93-113.
[15]  M. Kang, O. Pikhurko, Maximum Kr+1-free graphs which are not r-partite,Mat. Stud. 24 (2005) 12-20.
[16]  K.C. Das, Proof of conjectures on the distance signless Laplacian eigenvaluesof graphs, Linear Algebra Appl. 467 (2015) 100-115.
[17]  D. Stevanovic, P. Hansen, The minimum spectral radius of graphs with a givenclique number, Electron.J.Linear Algebra 17 (2008) 110-117.
[18]  H.Q. Lin, J.L. Shu, Y.R. Wu, G.L. Yu, Spectral radius of strongly connecteddigraphs, Discrete Math. 312 (2012) 3663-3669.
[19]  J.M. Zhang, T.Z. Huang, J.M. Guo, The smallest signless Laplacian spectralradius of graphs with a given clique number, Linear Algebra Appl. 439 (2013)2562-2576.
[20]  J.A. Bondy, U.S.R. Murty, Graph Theory With Applications, Macmillan, Lon-don, 1976.
[21]  H.Q. Lin, J.L. Shu, Sharp bounds on distance spectral radius of graphs, Linearand Multilinear Algebra 61 (2013) 442-447.
[22]  R.D. Xing, B. Zhou, J.P. Li, On the distance signless Laplacian spectral radiusof graphs, Linear and Multilinear Algebra 62 (2014) 1377-1387.
[23]  R.D. Xing, B. Zhou, On the distance and distance signless Laplacian spectralradii of bicyclic graphs, Linear Algebra Appl. 439 (2013) 3955-3963.
[24]  F.L. Tian, D. Wong, J.L. Rou, Proof for four conjectures about the distanceLaplacian and distance signless Laplacian eigenvalues of a graph, Linear AlgebraAppl. 471 (2015) 10-20.
[25]  J.M. Guo, J.X. Li, W.C. Shiu, The smallest Laplacian spectral radius of graphswith a given clique number, Linear Algebra Appl. 437 (2012) 1109-1122.
[26]  Abraham Berman, Robert J. Plemmons, Nonnegative Matrices in the Mathe-matical Sciences, New York: Academic Press, 1979.
[27]  R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University, England,1986.
[28]  H. Minc, Nonnegative Matrices, John Wiley and Sons Inc., New York, 1988.
[29]  J. Bang{Jensen, G. Gutin, Digraphs Theory, Algorithms and Applications,Springer, 2001.
[30]  R.L. Graham, L. Lovasz, Distance matrix polynomials of trees, Adv.Math 29(1978) 60-88.
[31]  X.L. Zhang, On the distance spectral radius of some graphs, Linear AlgebraAppl. 437 (2012) 1930-1941.
[32]  M. Nath, S. Paul, On the distance spectral radius of bipartite graphs, LinearAlgebra Appl. 436 (2012) 1285-1296.
[33]  M.Q. Zhai, G.L. Yu, J.L. Shu, Clique number and distance spectral radii ofgraphs, Ars Combin. 104 (2012) 385-392.
[34]  Y.N. Wang, B. Zhou, On distance spectral radius of graphs, Linear AlgebraAppl. 438 (2013) 3490-3503.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133