全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

随机时滞BAM神经网络的全局散逸性
Global Dissipativity for Stochastic BAM Neural Networks with Time Delay

DOI: 10.6054/j.jscnun.2015.08.022

Keywords: 随机时滞BAM神经网络, 均方散逸, 吸引集, Lyapunov泛函,
〖JP3〗stochastic BAM neural networks
, global dissipativity in mean, attractive set in mean, Lyapunov functions〖JP〗

Full-Text   Cite this paper   Add to My Lib

Abstract:

把不确定性因素考虑到双向联想记忆神经网络(BAM)中, 得到一类带Brown运动的随机时滞双向联想记忆神经网络(BAM)模型. 在激活函数有界的条件下, 研究了随机时滞BAM神经网络的全局散逸性. 通过Lyapunov泛函、Jensen不等式和It 公式等, 讨论了随机时滞BAM神经网络系统均方散逸的充分条件, 给出了该系统散逸的吸引集. 通过数值例子对所给出的结论进行了验证.
: Considering the randomness, which is one of the uncertain factors in the bidirectional associative memory(BAM) neural networks system, it is obtained that a class of stochastic bidirectional associative memory(BAM) neural networks with time delay and Brownian motion. Under the condition of the bounded activation function of the equation, it discusses the global dissipativity for stochastic bidirectional associative memory (BAM) networks with time delay. By using Lyapunov functions, Jensen's inequality and It's formula,it provides the sufficient condition for the global dissipativity in the mean square of such stochastic bidirectional associative memory (BAM) neural networks;it also gives the attractive set of the system. Finally, the numerical example is provided to demonstrate the effectiveness of the conclusion. The conclusion is a generalization of the existing literature in the paper

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133