|
- 2015
Gorenstein n-余挠模及Gorenstein n-余挠维数
|
Abstract:
设 R 是环,M是左R-模,n是一个固定的非负整数.称M是Gorenstein n-余挠的,如果对任意Gorenstein n-平坦左R-模N,有Ext_{R}^{1}(N,M)=0.本文主要在右n-凝聚环上讨论了Gorenstein n-余挠模及模和环的Gorenstein n-余挠维数的相关性质.
: Let R be a ring, M a left R-modules and n a fixed nonnegative integer.~Recall that M is called Gorenstein n-cotorsion if Ext$_{R}^{1}(N,M)=0$ for any Gorenstein~$n$-flat left R-modules $N$.~In this paper,~we discuss the relative properties of Gorenstein n-cotorsion modules and Gorenstein n-cotorsion dimension of modules and rings over right n-coherent rings
[1] | BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J].Comm. Algebra, 2009, 37:855-868 |
[2] | YANG Gang, LIU Zhongkui.Gorenstein flat covers over GF-closed rings[J].Comm. Algebra, 2012, 40(5):1632-1642 |
[3] | MAO Lixin, DING Nanqing.The cotorsion dimension of modules and rings 2006, 249 : 217-233[J].Abelian Groups, Rings, Modules, and Homological Algebra, 2006, 249:217-233 |
[4] | GAO Zenghui.On Gorenstein cotorsion dimension over GF-closed rings[J].Bull. Korean Math. Soc., 2014, 51(1):173-187 |
[5] | LEE S B.n-coherent rings[J].Comm. Algebra, 2002, 30(3):1119-1126 |
[6] | ENOCHS E E, JENDA O M G.Relative homological algebra[M]. Belin : Walter de Gruyter, 2000. |
[7] | DING Nanqing.On envelopes with the Unique Mapping Property[J]. [J].Comm. Algebra, 1996, 24:1459-1470 |
[8] | ENOCHS E E, JENDA O M G, LOPEZ-RAMOS J A.The existence of Gorenstein flat covers[J].Math. Scand, 2004, 94(1):46-62 |
[9] | SELVARAJ C, UDHAYAKUMAR R, UMAMAHESWARAN A.Gorenstein n-flat modules and their covers[J].Asia-European Journal of Mathematics, 2014, 7(3):- |
[10] | HOIM H.Gorenstein homological dimensions[J]. [J].Journal of Pure Application Algebra, 2004, 189:167-193 |
[11] | 佟文廷.同调代数引论[M].北京:高等教育出版社, 1998. |