全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

Gorenstein n-余挠模及Gorenstein n-余挠维数
Gorenstein n-Cotorsion Modules And Gorenstein n-Cotorsion Dimension

Full-Text   Cite this paper   Add to My Lib

Abstract:

设 R 是环,M是左R-模,n是一个固定的非负整数.称M是Gorenstein n-余挠的,如果对任意Gorenstein n-平坦左R-模N,有Ext_{R}^{1}(N,M)=0.本文主要在右n-凝聚环上讨论了Gorenstein n-余挠模及模和环的Gorenstein n-余挠维数的相关性质.
: Let R be a ring, M a left R-modules and n a fixed nonnegative integer.~Recall that M is called Gorenstein n-cotorsion if Ext$_{R}^{1}(N,M)=0$ for any Gorenstein~$n$-flat left R-modules $N$.~In this paper,~we discuss the relative properties of Gorenstein n-cotorsion modules and Gorenstein n-cotorsion dimension of modules and rings over right n-coherent rings

References

[1]  BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J].Comm. Algebra, 2009, 37:855-868
[2]  YANG Gang, LIU Zhongkui.Gorenstein flat covers over GF-closed rings[J].Comm. Algebra, 2012, 40(5):1632-1642
[3]  MAO Lixin, DING Nanqing.The cotorsion dimension of modules and rings 2006, 249 : 217-233[J].Abelian Groups, Rings, Modules, and Homological Algebra, 2006, 249:217-233
[4]  GAO Zenghui.On Gorenstein cotorsion dimension over GF-closed rings[J].Bull. Korean Math. Soc., 2014, 51(1):173-187
[5]  LEE S B.n-coherent rings[J].Comm. Algebra, 2002, 30(3):1119-1126
[6]  ENOCHS E E, JENDA O M G.Relative homological algebra[M]. Belin : Walter de Gruyter, 2000.
[7]  DING Nanqing.On envelopes with the Unique Mapping Property[J]. [J].Comm. Algebra, 1996, 24:1459-1470
[8]  ENOCHS E E, JENDA O M G, LOPEZ-RAMOS J A.The existence of Gorenstein flat covers[J].Math. Scand, 2004, 94(1):46-62
[9]  SELVARAJ C, UDHAYAKUMAR R, UMAMAHESWARAN A.Gorenstein n-flat modules and their covers[J].Asia-European Journal of Mathematics, 2014, 7(3):-
[10]  HOIM H.Gorenstein homological dimensions[J]. [J].Journal of Pure Application Algebra, 2004, 189:167-193
[11]  佟文廷.同调代数引论[M].北京:高等教育出版社, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133