|
- 2017
自然生长状态下树叶图像的分割与提取
|
Abstract:
以用智能手机拍摄的自然生长状态下的含有复杂背景的树叶图像为研究对象,对图像的背景及其RGB3个颜色分量的特征进行分析,根据分析的结果提出采用超绿(EXG)算法和底帽变换算法相结合的方法对目标树叶进行分割. 对于绿色分量与其他2个分量差异大的背景采用EXG算法去除,而对于绿色分量与其他2个分量差异小的背景采用形态学的底帽变换来去除. 为了减小目标树叶分割的错分率,采用Otsu算法、形态学和边缘最大矩形对上述分割后的细节进行细化分割. 分割结果表明:文中所采用的算法可以很好地将目标树叶从背景中分割出来,错分率小于3.68%.
: The leaves obtained by mobile phones in complex backgrounds are taken as the research objects. According to the results of RGB components feature analysis, the target leaves can be segmented by the Extra-green character (EXG) and the bottom-hat transformation. For removing the background of the green component and the others with large difference, the bottom-hat transformation can be used. While for the other two components with small difference, the Extra-green character can be used. Moreover, in order to reduce the error rate of the segmentation, the Otsu algorithm can be used to modify its details. The result shows that all above of the algorithms can segment the leaves well from the complex backgrounds and all error rates are less than 3.68%
[1] | Rahmadhani M, Yeni Herdiyeni, et al.Shape and vein extraction on plant leaf images using Fourier and b-spline modeling[C]. AFITA 2010 International Conference, The Quality Information for Competitive Agricultural Based Production System and Commerce, 2010:306-310. |
[2] | Patil R V, Jondhale K C, et al.Edge based technique to estimate number of clusters in k-means clustering with histograms in HSV Color Space[C]. IEEE 10th Workshop on Multimedia Signal Processing, 2008:322-325. |
[3] | Bergasa L, Duffy N, Lacey G, et al.Industrial inspection using Gaussian functions in a color space[J].Image and Vision Computing, 2000, 18(12):951-957 |
[4] | 刁智华,王欢,宋奄卯,等.复杂背景下棉花病叶害螨虫图像分割方法[J][J].农业工程学报, 2013, 29(5):147-152 |
[5] | 张武,黄帅,汪京京,等.复杂背景下小麦叶部病害图像分割方法研究[J].计算机工程与科学, 2015, 37(7):349-354 |
[6] | 满庆奎.复杂背景下植物叶片图像分割算法及其应用研究[D]. 曲阜:控制理论与控制工程学院. 2009, 23-19. |
[7] | 赵博,宋正河,毛文华等.基于PSO与K-均值算法的农业超绿图像分割方法[J][J].农业机械学报, 2009, 8(4):166-169 |
[8] | 于国平.农业AGV视觉导航参数提取与轨迹控制的研究[D]. 江苏:农业生物环境与能源工程学院. 2006:16-17. |
[9] | 胡波 杂草识别中图像图像特征的优化及识别算法的研究[D].江苏:农业生物环境与能源工程学院.2007:23-25. |
[10] | Sezgin M, sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging, 2004, 13(1):146-165 |
[11] | Jianlun Wang, Jianlei He, Yu Han, et al.An Adaptive thresholding algorithm of field leaf image[J][J].Computers and Electronics in Agriculture, 2013, 96(26):23-39 |
[12] | 王红君,陈伟,赵辉,等.复杂背景下植物叶片的彩色图像分割[J].中国农机化学报, 2013, 34(2):207-211 |
[13] | Sezgin M, sankur B.Survey over image thresholding techniques and quantitative performance evaluation[J].Journal of Electronic Imaging, 2004, 13(1):146-165 |
[14] | 李灿灿,孙长辉,王静,等.基于改进的算子和色调信息的叶脉提取方法[J].农业工程学报, 2011, 27(7):196-199 |
[15] | Sezgin M, Sankur B.Survey over image there holding techniques and quantitative Performance[J].Journal of Electronic Imaging, 2004, 13(1):146-165 |
[16] | 齐丽娜,张博,王战凯,等.最大类间方差法在图像处理中的应用[J].无线电工程, 2006, 36(7):42-45 |
[17] | 李冠林,马占鸿,黄冲,.基于K-mean聚类算法的葡萄病害彩色图像分割方法[J][J].农业工程学报, 2010, 26(增刊2):32-37 |
[18] | 赵伟,王希常,李晓寒.基于顶帽变换和模糊均值聚类的图像分割方法[J].计算机技 术与发展, 2010, 20(8):52-55 |
[19] | 赵德升,毛罕平,赵树人等.杂草识别中背景分割方法的比较研究[J]. :-.[J].农机化研究, 2009, 11(4):76-79 |
[20] | Patil, Edge based technique to estimate Number of Clusters in k-means Color Image[C].2010 3rd IEEE International Conference on Computer Science and Information Technology, 2010:117-121. |
[21] | 赵方,石晟,闫民.普通光照下叶片图像特征信息抽取[J][J].计算机工程与应用, 2015, 51(5):156-166 |
[22] | Clark J, Barman S, Remagnino P, et al.Venation pattern analysis of leaf [J][J].Lecture Notes in Computer Science, 2006, 42(92):427-436 |
[23] | Aiping Gong, Xiang Wu, Zhengjun Qiu, et al.A hand held device for leaf area measurement[J][J].Computers and Electronics in Agriculture, 2013, 98(19):74-80 |