全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

水溶液显影环氧乙烷光刻胶的显影条件及机理探索
Study on the parameters and mechanism of developing process of an aqueous solution developed epoxy resist

DOI: 10.6054/j.jscnun.2017052

Full-Text   Cite this paper   Add to My Lib

Abstract:

光刻胶是微纳米加工领域关键的材料之一,主要用于图形转移和蚀刻过程中对基材的保护. 基于水性溶液的光刻工艺可以减少污染,是未来材料发展和工艺改进的方向之一. 本论文针对同一种光刻胶(KMPR),对比有机溶剂和碱性显影液的显影效果,得到最佳水溶液显影液— KOH显影液,探索并得到其显影的较佳浓度范围,通过实验验证和解释温度和浓度的影响.
: Photoresist is a key material in micro-fabrication for microstructure transferring during photolithography and protecting substrate during dry/wet etching. The photoresist developed using aqueous solution is more environmental friendly, which is the future of this type of materials. In this article, we focused on the KMPR resist, a type of epoxy photoresist which could be developed by either aqueous solution or organic solvent. We studied and compared the parameters and process of the aqueous solution (KOH and TMAH) or organic solvent (PGEMA) developing, mainly focused on the developing conditions for KOH solution and obtained an optimum KOH concentration and working temperature. And the mechanism of the developing process has also been interpreted

References

[1]  Smith N R, Hou L, Zhang J, et al. Fabrication and demonstration of electrowetting liquid lens arrays[J]. Display Technology, Journal of, 2009, 5(11):411-413. doi:10.1109/JDT.2009.2027036
[2]  Karuwan C, Sukthang K, Wisitsoraat A, et al. Electrochemical detection on electrowetting-on-dielectric digital microfluidic chip[J]. Talanta, 2011, 84:1384-1389. doi: 10.1016/j.talanta.2011.03.073
[3]  Malic L, Veres T, Tabrizian M, Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization[J]. Biosensors and Bioelectronics, 2009, 24:2218-2224. doi: 10.1016/j.bios.2008.11.031
[4]  郑金红. l-Line光刻胶材料的研究进展[J]. 影像科学与光化学, 2012, 30 (2) : 81-90.Zheng J H, Evolution and progress of I-Line photoresist materials [J]. Imaging Science and Photochemistry, 2012, 30 (2) : 81-90.
[5]  许箭,陈力,田凯军,等. 先进光刻胶材料的研究进展[J]. 影像科学与光化学, 2011, 29(6): 417-429Xu J, Chen L, Tian K J, et al, Molecular structure of advanced photoresists [J]. Imaging Science and Photochemistry, 2011, 29 (6) : 417-429.
[6]  Templeton M K, Szmanda C R, Zampini A, On the dissolution kinetics of positive photoresists: The secondary structure model. SPIE, 771, Advances in Resist Technology and Processing IV, 1987, 136-147. doi:10.1117/12.940318
[7]  Arcus R A, A membrane model for positive photoresist development. SPIE, 631, Advances in Resist Technology and Processing III, 1986, 124-134. doi: 10.1117/12.963634
[8]  Lauvernier D, Vilcot J, Fran?ois M, et al. Optimization of HSQ resist e-beam processing technique on GaAs material[J]. Microelectronic Engineering, 2004, 75:177-182. doi:10.1016/j.mee.2004.05.002
[9]  Shao J, Zhang S, Liu J, et al. Evaluations of KOH solution as an effective developer for chemical amplified resist UVIII[J]. Microelectronic Engineering, 2014, 130:24-27. doi:10.1016/j.mee.2014.08.014
[10]  Grigorescu A E, van der Krogt M C, Hagen C W, et al. 10 nm lines and spaces written in HSQ, using electron beam lithography[J]. Microelectronic Engineering, 2007, 84:822-824. doi:10.1016/j.mee
[11]  Hayes R A, Feenstra B J, Video-speed electronic paper based on electrowetting[J]. Nature, 2003, 425:383-385. doi:10.1038/nature01988
[12]  Hinsberg W D, Gutierrez M L, Effect of developer composition on photoresist performance. SPIE, 469, Advances in Resist Technology 1984, 57-64. doi:10.1117/12.941777
[13]  Schultz A, Heikenfeld J, Kang H S, et al. 1000:1 Contrast ratio transmissive electrowetting displays[J]. Journal of Display Technology, 2011, 7(11): 583-585. doi: 10.1109/JDT.2011.2160842
[14]  Roques-Carmes T, Hayes R A, Feenstra B J, et al. Liquid behavior inside a reflective display pixel based on electrowetting[J]. J. Appl. Phys., 2004, 95:4389-4396. doi: 10.1063/1.1667595
[15]  Mugele F, Baret J, Electrowetting: from basics to applications[J]. J. Phys.: Condens. Matter, 2005, 17:R705-R774. doi : 10.1088/0953-8984/17/28/R01
[16]  Reynolds1 M, Elias A, Elliott D G, et al. Variation of thermal and mechanical properties of KMPR due to processing parameters[J]. J. Micromech. Microeng., 2012, 22:125023, 1-7. doi:10.1088/0960-1317/22/12/125023
[17]  Srinivasan V, Pamula V K, Fair R B, An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids[J]. Lab Chip, 2004, 4:310-315. doi: 10.1039/B403341H
[18]  Li C, Jiang H, Electrowetting-driven variable-focus microlens on flexible surfaces[J]. Appl. Phys. Lett., 2012, 100(23):231105-1-4. doi: 10.1063/1.4726038
[19]  Herbertson D L, Evans C R, Shirtcliffe N J, et al. Electrowetting on superhydrophobic SU-8 patterned surfaces[J]. Sensors and Actuators A, 2006, 130-131:189-193. doi:10.1016/j.sna.2005.12.018
[20]  Chang Y, Mohseni K, Bright V M, Fabrication of tapered SU-8 structure and effect of sidewall angle for a variable focus microlens using EWOD[J]. Sensors and Actuators A, 2007, 136:546-553. doi: 10.1016/j.sna.2007.01.009
[21]  陈瑞峰. 新材料进展[J]. 化学工业, 2014, 32 (4) : 33-35.
[22]  郑金红,黄志齐,侯宏森. 248 nm 深紫外光刻胶[J]. 感光科学与光化学, 2003, 21 (5) :346-356.Zheng J H, Huang Z Q, Hou H S. Evolution and progress of deep UV 248nm photoresists [J]. Photographic Science and Photochemistry, 2003, 21 (5) : 346-356.
[23]  Lee C, Jiang K. KMPR photoresist for fabrication of thick microstructures. Proceedings of the 3rd International Conference, 2007.
[24]  S. Grilli S, L. Miccio L, V. Vespini V, et al. Liquid micro-lens array activated by selective electrowetting on lithium niobate substrates[J]. Optics Express, 2008, 16(11):8084-8093. doi: 10.1364/OE.16.008084
[25]  朱军, 刘景全, 张金娅, 等. 环氧基紫外负性光刻胶的特性、应用工艺与展望[J]. 高分子材料科学与工程, 2004, 20 (4) : 59-65.Zhu J, Liu J Q, Zhang J Y, et al, Synthesis and characterization of polyethylene glycol and cellulose grafted copolymer [J]. Polymer Materials Science and Engineering. 2004, 20 (4) : 59-65.
[26]  Huang J, Kwei T K, Reiser A, On the molecular mechanism of positive novolac resisists. SPIE, 1086, Advances in Resist Technology and Processing VI, 1989, 74-84. doi:10.1117/12.953020
[27]  Henderson C L, Tsiartas P C, Simpson L L, et al. Factors affecting the dissolution rate of novolac resins II: Developer composition effects[J]. SPIE, 2724, 481-490. doi: 10.1117/12.241846
[28]  Miller H R, Johnson D W, Mori S, KMPR photoresist process optimization using factorial experimental design[J]. J. Photopolym. Sci., Technol., 2004, 17(5):677-684. doi: 10.2494/photopolymer.17.677

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133