全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantification of Lansoprazole in Oral Suspension by Ultra-High-Performance Liquid Chromatography Hybrid Ion-Trap Time-of-Flight Mass Spectrometry

DOI: 10.1155/2011/832414

Full-Text   Cite this paper   Add to My Lib

Abstract:

An LC-MS/MS method was developed and validated to be used as a stability indicating assay for the study of a 3?mg/mL lansoprazole oral suspension. The method utilizes a UPLC (ultra-performance liquid chromatography) column and unique mass spectrometric detection (ion-trap time-of-flight (IT-TOF)) to achieve a sensitive (LOD 2?ng/mL), accurate, and reproducible quantification of lansoprazole. This method reports an intraday and interday coefficient of variation of 2.98 ± 2.17% ( for each concentration for each day) and 3.07 ± 0.89% ( for each concentration), respectively. Calibration curves (5–25?μg/mL) were found to be linear with an value ranging from 0.9972 to 0.9991 on 4 different days. Accuracy of the assay, expressed as % error, ranged from 0.30 to 5.22%. This method is useful for monitoring the stability of lansoprazole in oral suspension. 1. Introduction A significant problem in pediatric pharmacotherapy is the lack of commercially available liquid formulations. Proton pump inhibitors (PPIs) are a class of drugs that are routinely used in children; however, stability data for extemporaneous liquid formulations are not readily available for many of these compounds. In a prospective study performed by Lugo et al., which included 21 children’s hospitals, an oral suspension of lansoprazole was the number one reported extemporaneous formulation prepared in the inpatient setting [1]. In the study, 19 of 21 hospitals surveyed reported using a 3?mg/mL lansoprazole oral suspension; however, there are limited data regarding the stability of this formulation [1]. Compromised stability, in regard to commercial and extemporaneous formulations, is defined as loss of more than 10% of the active ingredient [2]. While the lack of stability of lansoprazole in acidic media (such as apple juice) has been clearly demonstrated [3], the studies examining the stability in a basic suspension (prepared in 8.4% sodium bicarbonate) are conflicting. According to a study by DiGiacinto et al., the reported stability of lansoprazole suspension was eight hours at 22°C and 14?days at 4°C [4]. In contrast, a study performed by Phillips et al. revealed a stability of 4?weeks when lansoprazole was stored in amber plastic vials under refrigeration and 2?weeks at room temperature [5]. Thus, the commonly accepted stability of lansoprazole suspension prepared in 8.4%?sodium bicarbonate is 14?days [6]. A few reports of lansoprazole quantification by LC-MS/MS can be found in the literature. Hishinuma et al. [7] measured lansoprazole and rabeprazole in human serum for applications in

References

[1]  R. A. Lugo, J. Cash, R. Trimby, R. Ward, and S. Spielberg, “A survey of children’s hospitals on the use of extemporaneous liquid formulations in the inpatient setting,” The Journal of Pediatric Pharmacology and Therapeutics, vol. 14, p. 156, 2009.
[2]  Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 21st edition, 2006.
[3]  A. Olabisi, J. Chen, and M. Garala, “Evaluation of different lansoprazole formulations for nasogastric or orogastric administration,” Hospital Pharmacy, vol. 42, no. 6, pp. 537–542, 2007.
[4]  J. L. DiGiacinto, K. M. Olsen, K. L. Bergman, and E. B. Hoie, “Stability of suspension formulations of lansoprazole and omeprazole stored in amber-colored plastic oral syringes,” Annals of Pharmacotherapy, vol. 34, no. 5, pp. 600–605, 2000.
[5]  J. O. Phillips, M. Metzler, and K. M. Olsen, “The stability of simplified lansoprazole suspension (SLS),” Gastroenterology, vol. 116, p. 122, 1999.
[6]  L. Trissel, Trissel’s Stability of Compounded Formulations, American Pharmacists Association, Washington, DC, USA, 3rd edition, 2005.
[7]  T. Hishinuma, K. Suzuki, H. Yamaguchi et al., “Simple quantification of lansoprazole and rabeprazole concentrations in human serum by liquid chromatography/tandem mass spectrometry,” Journal of Chromatography B, vol. 870, no. 1, pp. 38–45, 2008.
[8]  C. H. Oliveira, R. E. Barrientos-Astigarraga, E. Abib, G. D. Mendes, D. R. Da Silva, and G. De Nucci, “Lansoprazole quantification in human plasma by liquid chromatography-electrospray tandem mass spectrometry,” Journal of Chromatography B, vol. 783, no. 2, pp. 453–459, 2003.
[9]  G. L. Wu, H. L. Zhou, J. Z. Shentu, Q. J. He, and B. O. Yang, “Determination of lansoprazole in human plasma by rapid resolution liquid chromatography-electrospray tandem mass spectrometry: application to a bioequivalence study on Chinese volunteers,” Journal of Pharmaceutical and Biomedical Analysis, vol. 48, no. 5, pp. 1485–1489, 2008.
[10]  A. A. M. Wahbi, O. Abdel-Razak, A. A. Gazy, H. Mahgoub, and M. S. Moneeb, “Spectrophotometric determination of omeprazole, lansoprazole and pantoprazole in pharmaceutical formulations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 30, no. 4, pp. 1133–1142, 2002.
[11]  M. Miura, H. Tada, and T. Suzuki, “Simultaneous determination of lansoprazole enantiomers and their metabolites in plasma by liquid chromatography with solid-phase extraction,” Journal of Chromatography B, vol. 804, no. 2, pp. 389–395, 2004.
[12]  N. ?zaltín, “Determination of Lansoprazole in pharmaceutical dosage forms by two different spectroscopic methods,” Journal of Pharmaceutical and Biomedical Analysis, vol. 20, no. 3, pp. 599–606, 1999.
[13]  Z. A. El-Sherif, A. O. Mohamed, M. G. El-Bardeicy, and M. F. El-Tarras, “Stability-indicating methods for the determination of lansoprazole,” Spectroscopy Letters, vol. 38, no. 1, pp. 77–93, 2005.
[14]  H. Wu, J. Ge, P.-Y. Yang, J. Wang, M. Uttamchandani, and S. Q. Yao, “A peptide aldehyde microarray for high-throughput profiling of cellular events,” Journal of the American Chemical Society, vol. 133, no. 6, pp. 1946–1954, 2011.
[15]  G. Theodoridis, H. G. Gika, and I. D. Wilson, “LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics,” Trends in Analytical Chemistry, vol. 27, no. 3, pp. 251–260, 2008.
[16]  T. Bisogno, F. Piscitelli, and V. Di Marzo, “Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: endocannabinoidomics,” European Journal of Lipid Science and Technology, vol. 111, no. 1, pp. 53–63, 2009.
[17]  Y. Liang, H. Hao, A. N. Kang et al., “Qualitative and quantitative determination of complicated herbal components by liquid chromatography hybrid ion trap time-of-flight mass spectrometry and a relative exposure approach to herbal pharmacokinetics independent of standards,” Journal of Chromatography A, vol. 1217, no. 30, pp. 4971–4979, 2010.
[18]  C. T. Viswanathan, S. Bansal, B. Booth et al., “Workshop/conference report—quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays,” AAPS Journal, vol. 9, no. 1, article 4, pp. E30–E42, 2007.
[19]  M. Ende and G. Spiteller, “Contaminants in mass spectrometry,” Mass Spectrometry Reviews, vol. 1, pp. 29–62, 1982.
[20]  L. Nováková, L. Matysová, and P. Solich, “Advantages of application of UPLC in pharmaceutical analysis,” Talanta, vol. 68, no. 3, pp. 908–918, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133