|
- 2017
基于降噪自编码的电能质量扰动识别
Abstract: 针对目前电能质量扰动识别时特征提取不充分,造成识别精度不高的问题,引入了降噪自编码算法。降噪自编码算法起源于自动编码算法,两者都属于深度学习算法。其中,自动编码算法已经被应用于电能质量扰动识别,并取得了一定的成果。但是,自动编码算法对含噪声干扰的电能质量扰动信号的识别精度还不是很理想。本文采用降噪自编码算法,将克服这一问题。首先对无噪声的扰动信号用噪声进行“破坏”,然后用带噪声信号去重构原始信号,得到扰动信号波形的固有特征,最后通过BP神经网络分类器对整个网络进行微调,得到最后用于分类的特征样本。该方法降低了传统特征提取算法对特征选取不当,造成分类识别精度不理想的风险,并在一定程度上提高了含噪声的电能质量扰动信号的识别精度。仿真结果表明,该方法在识别含噪声的电能质量扰动信号上有很大的优势。 更多还原
|