全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于核最小二乘回归子空间分割的高维小样本数据聚类
High dimension small sample data clustering using kernel least square regression subspace segmentation

DOI: 10.7631/issn.1000-2243.16439

Keywords: 最小二乘回归 子空间分割 核理论 聚类 高维小样本
least square regression subspace segmentation kernel theory clustering high dimension small sample

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对基于线性表示理论的子空间分割方法没有考虑高维小样本数据的非线性性质,借鉴核理论,提出核最小二乘回归子空间分割方法,使子空间分割方法适合高维小样本数据的非线性性质. 经6个基因表达数据集和4个图像数据集上的实验,表明该方法是有效的.
The classical subspace segmentation methods based on linear representation theory do not consider the nonlinear properties of high dimension small sample data. In sight of the kernel theory,the kernel least square regression subspace segmentation method is proposed to make the subspace segmentation method suitable for the nonlinear properties of high dimension small sample data. Experiments on six gene expression datasets and four image datasets show that the method is effective

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133