全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Direct Zinc Determination in Brazilian Sugar Cane Spirit by Solid-Phase Extraction Using Moringa oleifera Husks in a Flow System with Detection by FAAS

DOI: 10.1155/2011/765746

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper reports a method for the determination of zinc in Brazilian sugar cane spirit, (cacha?a in Portuguese), using solid-phase extraction with a flow injection analysis system and detection by FAAS. The sorbent material used was activated carbon obtained from Moringa oleifera husks. Flow and chemical variables of the proposed system were optimized through multivariate designs. The factors selected were sorbent mass, sample pH, sample flow rate, and eluent concentration. The optimum extraction conditions were obtained using a sample pH of 4.0, a sample flow rate of 6.0?mL?min?1, 30.0?mg of sorbent mass, and 1.0?mol?L?1 HNO3 as the eluent at a flow rate of 4.0?mL?min?1. The limit of detection for zinc was 1.9?μg?L?1, and the precision was below 0.82% (20.0?μg?L?1, ). The analytical curve was linear from 2 to 50?μg?L?1, with a correlation coefficient of 0.9996. The method developed was successfully applied to spiked Brazilian sugar cane spirit, and accuracy was assessed through recovery tests, with results ranging from 83% to 100%. 1. Introduction Brazilian sugar cane spirit (cacha?a in Portuguese) has received growing attention since it is increasingly being appreciated worldwide [1]. This alcoholic beverage is obtained from the distillation of the sugar cane fermented must (wine) employing basically two types of apparatus homemade copper pot stills (alembics) or industrial stainless steel columns. Minas Gerais State is by far the largest producer of high-quality artisanal cacha?a in Brazil, and the exportation of this product has reached significant levels of economic importance. The production of artisanal cacha?a is also directly related to other important economic activities such as the production of cow’s milk, beef, and organic fertilizer, since the sugar cane residues (leaves and tips), as well as the tail distillation fraction (known as vinhoto), can be used as cattle feed in the dry season, when appropriate pasture land becomes scarce [2]. However, less than 1% of the volume produced is exported. Efforts have been made to increase the export volume and qualify cacha?a as an international Brazilian beverage [3]. Great improvements have been made regarding the determination of the chemical composition of cacha?a in the past decade [4–8]. Consequently, quality control has been improved, and producers are also able to successfully control the chemical composition and sensory profile. Metal elements in distilled beverages come from the raw materials, crop treatment, or manufacturing processes [9]. Thus, knowledge of the inorganic profile of

References

[1]  P. P. Souza, L. C. A. de Oliveira, R. R. Catharino et al., “Brazilian cacha?a: "single shot" typification of fresh alembic and industrial samples via electrospray ionization mass spectrometry fingerprinting,” Food Chemistry, vol. 115, no. 3, pp. 1064–1068, 2009.
[2]  J. C. G. M. Ribeiro, Fabrica??o Artesanal de Cacha?a Mineira, Perform, Belo Horizonte, Brazil, 1997.
[3]  E. A. Neves, A. Oliveira, A. P. Fernandes, and J. A. Nóbrega, “Simple and efficient elimination of copper(II) in sugar-cane spirits,” Food Chemistry, vol. 101, no. 1, pp. 33–36, 2006.
[4]  S. M. Bettin, W. D. Isique, D. W. Franco, M. L. Andersen, S. Knudsen, and L. H. Skibsted, “Phenols and metals in sugar-cane spirits. quantitative analysis and effect on radical formation and radical scavenging,” European Food Research and Technology, vol. 215, no. 2, pp. 169–175, 2002.
[5]  M. Boscolo, C. W. B. Bezerra, D. R. Cardoso, B. S. Lima Neto, and D. W. Franco, “Identification and dosage by HRGC of minor alcohols and Esters in Brazilian sugar-cane spirit,” Journal of the Brazilian Chemical Society, vol. 11, no. 1, pp. 86–90, 2000.
[6]  R. F. Nascimento, C. W. B. Bezerra, S. M. B. Furuya et al., “Mineral profile of Brazilian cacha?as and other international spirits,” Journal of Food Composition and Analysis, vol. 12, no. 1, pp. 17–25, 1999.
[7]  R. F. Nascimento, D. R. Cardoso, D. Keukeleire, B. S. Lima-Neto, and D. W. Franco, “Quantitative HPLC analysis of acids in Brazilian Cacha?as and various spirits using fluorescence detection of their 9-anthrylmethyl esters,” Journal of Agricultural and Food Chemistry, vol. 48, no. 12, pp. 6070–6073, 2000.
[8]  R. F. Nascimento, D. R. Cardoso, B. S. Lima Neto, and D. W. Franco, “Determination of acids in Brazilian sugar cane spirits and other alcoholic beverages by HRGC-SPE,” Chromatographia, vol. 48, no. 11-12, pp. 751–757, 1998.
[9]  P. C. Onianwa, I. G. Adetola, C. M. A. Iwegbue, M. F. Ojo, and O. O. Tella, “Trace heavy metals composition of some Nigerian beverages and food drinks,” Food Chemistry, vol. 66, no. 3, pp. 275–279, 1999.
[10]  F. Salvo, L. L. Pera, G. Bella, M. Nicotina, and G. Dugo, “Influence of different mineral and organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 1090–1094, 2003.
[11]  G. Dugo, L. L. Pera, V. L. Turco, G. D. Bella, and F. Salvo, “Determination of Ni (II) in beverages without any sample pretreatment by adsorptive stripping chronopotentiometry (AdSCP),” Journal of Agricultural and Food Chemistry, vol. 52, no. 7, pp. 1829–1834, 2004.
[12]  A. M. Camean, I. Moreno, M. Lopez-Artiguez, et al., “Differentiation of Spanish brandies according to their metal content,” Talanta, vol. 54, no. 1, pp. 53–59, 2001.
[13]  O. N. Obrezkov, V. A. Tolkacheva, G. I. Zaikanova, et al., “The use of ion chromatography in vodka and liqueur production. Determination of transition metals,” Industrial Laboratory, vol. 66, pp. 18–21, 2000.
[14]  J. G. Ibanez, A. Carreon-Alvarez, M. Barcena-Soto, and N. Casillas, “Metals in alcoholic beverages: a review of sources, effects, concentrations, removal, speciation, and analysis,” Journal of Food Composition and Analysis, vol. 21, no. 8, pp. 672–683, 2008.
[15]  U. Gassenschmidt, K. D. Jany, B. Tauscher, and H. Niebergall, “Isolation and characterization of a flocculating protein from Moringa oleifera lam,” Biochimica et Biophysica Acta, vol. 1243, no. 3, pp. 477–481, 1995.
[16]  A. M. Warhurst, G. L. McConnachie, and S. J. T. Pollard, “Characterisation and applications of activated carbon produced from Moringa oleifera seed husks by single-step steam pyrolysis,” Water Research, vol. 31, no. 4, pp. 759–766, 1997.
[17]  R. Sivaraj, C. Namasivayam, and K. Kadirvelu, “Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions,” Waste Management, vol. 21, no. 1, pp. 105–110, 2001.
[18]  M. Akhtar, S. M. Hasany, M. I. Bhanger, and S. Iqbal, “Sorption potential of Moringa oleifera pods for the removal of organic pollutants from aqueous solutions,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 546–556, 2007.
[19]  S. R. Kamath and A. Proctor, “Silica gel from rice hull ash: preparation and characterization,” Cereal Chemistry, vol. 75, no. 4, pp. 484–487, 1998.
[20]  J. N. Bianchin, E. Martendal, R. Mior et al., “Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry,” Talanta, vol. 78, no. 2, pp. 333–336, 2009.
[21]  F. G. Pinto, S. S. Rocha, M. H. Canuto, et al., “Determination of copper and zinc in cacha?a by flame atomic absorption spectrometry using calibration by matrix matching,” Rev. Analytica, vol. 17, no. 5, pp. 48–50, 2005.
[22]  D. Sancho, M. Vega, L. Debán, R. Pardo, and G. González, “Determination of zinc, cadmium and lead in untreated sugar samples by anodic stripping voltammetry,” Analyst, vol. 122, no. 7, pp. 727–730, 1997.
[23]  A. M. H. Shabani, S. Dadfarnia, and T. Moosavinejad, “On-line preconcentration system using a microcolumn packed with alizarin red s-modified alumina for zinc determination by flame atomic absorption spectrometry,” Quimica Nova, vol. 32, no. 5, pp. 1202–1205, 2009.
[24]  M. Zougagh, P. C. Rudner, A. G. Torres, and J. M. C. Pavón, “Application of doehlert matrix and factorial designs in the optimization of experimental variables associated with the on-line preconcentration and determination of zinc by flow injection inductively coupled plasma atomic emission spectrometry,” Journal of Analytical Atomic Spectrometry, vol. 15, no. 12, pp. 1589–1594, 2000.
[25]  V. K. Jain, S. S. Sait, P. Shrivastav, and Y. K. Agrawal, “Application of chelate forming resin amberlite XAD-2-o-vanillinthiosemicarbazone to the separation and preconcentration of copper(II), zinc(II) and lead(II),” Talanta, vol. 45, no. 2, pp. 397–404, 1997.
[26]  R. Compa?ó, R. Ferrer, J. Guiteras, and M. D. Prat, “Spectrofluorimetric detection of zinc and cadmium with 8- (benzenesulfonamido)-quinoline immobilized on a polymeric matrix,” Analyst, vol. 119, no. 6, pp. 1225–1228, 1994.
[27]  M. G. A. Korn, A. F. Santos Jr., H. V. Jaeger, N. M. S. Silva, and A. C. S. Costa, “Copper, zinc and manganese determination in saline samples employing FAAS after separation and preconcentration on amberlite XAD-7 and dowex 1X-8 loaded with alizarin red S,” Journal of the Brazilian Chemical Society, vol. 15, no. 2, pp. 212–218, 2004.
[28]  A. F. Santos Jr., “Determination of Mn, Cu and Zn in saline matrices by flame atomic absorption spectrometry after separation and preconcentration on amberlite XAD-7 impregnated with alizarin red s,” Química Nova, vol. 25, pp. 1086–1090, 2002.
[29]  C. R. T. Tarley, T. C. ávila, M. G. Segatelli et al., “Silica-alumina-niobia (SiO2/Al2O3/Nb 2O5) matrix obtained by the sol-gel processing method: new material for online extraction of zinc ions,” Journal of the Brazilian Chemical Society, vol. 21, no. 6, pp. 1106–1116, 2010.
[30]  H. N. Bhatti, B. Mumtaz, M. A. Hanif, and R. Nadeem, “Removal of Zn(II) ions from aqueous solution using Moringa oleifera lam. (horseradish tree) biomass,” Process Biochemistry, vol. 42, no. 4, pp. 547–553, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133