Titrimetric and spectrophotometric methods are described for the determination of oxcarbazepine (OXC) in bulk drug and in tablets. The methods use N-bromosuccinimide (NBS) and bromopyrogallol red (BPR) as reagents. In titrimetry (method A), an acidified solution of OXC is titrated directly with NBS using methyl orange as indicator. Spectrophotometry (method B) involves the addition of known excess of NBS to an acidified solution of OXC followed by the determination of the unreacted NBS by reacting with BPR and measuring the absorbance of the unreacted dye at 460?nm. Titrimetry allows the determination of 6–18?mg of OXC and follows a reaction stoichiometry of 1?:?1 (OXC?:?NBS), whereas spectrophotometry is applicable over the concentration range of 0.8–8.0? g?mL?1. Method B with a calculated molar absorptivity of ?L?mol?1?cm?1 is the most sensitive spectrophotometric method ever developed for OXC. The optical characteristics such as limits of detection (LOD), quantification (LOQ), and Sandell's sensitivity values are also reported for the spectrophotometric method. The accuracy and precision of the methods were studied on intraday and interday basis. The methods described could usefully be applied to routine quality control of tablets containing OXC. No interference was observed from common pharmaceutical adjuvants. Statistical comparison of the results with a reference method shows an excellent agreement and indicates no significant difference in accuracy and precision. The reliability of the methods was further ascertained by recovery studies in standard addition procedure. 1. Introduction Oxcarbazepine (OXC), (chemically known as 10,11-dihydro-10-oxo-5H-dibenzo[b,f]azepine-5-carboxamide), is a novel antiepileptic drug, which was developed as a second generation and a follow-up compound to carbamazepine. Clinically, it has been used to treat several types of epilepsy [1–3] and bipolar disorders [4]. The ever-increasing use of OXC in pharmaceutical formulations has necessitated its determination as a matter of foremost importance. OXC is not official in any Pharmacopoeia. Various analytical methods such as HPLC [5–8], HPTLC [9], GC [8], microemulsion electrokinetic chromatography [10], capillary electrokinetic chromatography [11], voltammetry [12, 13] and capillary electrophoresis [14] have been reported for the determination of OXC in pharmaceuticals. However, these methods involve the use of expensive instruments which are not available at most quality control laboratories in developing and underdeveloped nations. Titrimetry is still widely used in
References
[1]
S. M. Grant and D. Faulds, “Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders,” Drugs, vol. 43, no. 6, pp. 873–888, 1992.
[2]
A. D. Fraser, “New drugs for the treatment of epilepsy,” Clinical Biochemistry, vol. 29, no. 2, pp. 97–110, 1996.
[3]
M. M. Kalis and N. A. Huff, “Oxcarbazepine, an antiepileptic agent,” Clinical Therapeutics, vol. 23, no. 5, pp. 680–700, 2001.
[4]
A. Musenga, M. A. Saracino, G. Sani, and M. A. Raggi, “Antipsychotic and antiepileptic drugs in bipolar disorder: the importance of therapeutic drug monitoring,” Current Medicinal Chemistry, vol. 16, no. 12, pp. 1463–1481, 2009.
[5]
J. M. Juenke, P. I. Brown, F. M. Urry, and G. A. McMillin, “Drug monitoring and toxicology: a procedure for the monitoring of oxcarbazepine metabolite by HPLC-UV,” Journal of Chromatographic Science, vol. 44, no. 1, pp. 45–48, 2006.
[6]
M. L. Qi, P. Wang, L. J. Wang, and R. N. Fu, “LC method for the determination of oxcarbazepine in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 1, pp. 57–62, 2003.
[7]
K. S. Rao, N. Belorkar, and M. E. B. Rao, “Development and validation of stability-indicating liquid chromatographic method for the quantitative determination of oxcarbazepine in tablet dosage forms,” Journal of Young Pharmacists, vol. 1, no. 3, pp. 270–277, 2009.
[8]
E. Greiner-Sosanko, S. Giannoutsos, D. R. Lower, M. A. Virji, and M. D. Krasowski, “Drug monitoring: simultaneous analysis of lamotrigine, oxcarbazepine, 10-hydroxycarbazepine, and zonisamide by HPLC-UV and a rapid GC method using a nitrogen-phosphorus detector for levetiracetam,” Journal of Chromatographic Science, vol. 45, no. 9, pp. 616–622, 2007.
[9]
T. S. Reddy and P. S. Devi, “Validation of a high-performance thin-layer chromatographic method with densitometric detection for quantitative analysis of two anticonvulsants in tablets,” Journal of Planar Chromatography—Modern TLC, vol. 20, no. 6, pp. 451–456, 2007.
[10]
M. Ivanova, E. Marziali, M. A. Raggi, and E. Kenndler, “Microemulsion electrokinetic chromatography for the separation of carbamazepine, oxcarbazepine, and their metabolites,” Journal of Separation Science, vol. 25, no. 14, pp. 863–871, 2002.
[11]
E. Marziali, M. A. Raggi, N. Komarova, and E. Kenndler, “Octakis-6-sulfato- -cyclodextrin as additive for capillary electrokinetic chromatography of dibenzoazepines: carbamazepine, oxcarbamazepine and their metabolites,” Electrophoresis, vol. 23, no. 17, pp. 3020–3026, 2002.
[12]
M. E. B. Calvo, O. D. Renedo, and M. J. A. Martínez, “Determination of oxcarbazepine by square wave adsorptive stripping voltammetry in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 43, no. 3, pp. 1156–1160, 2007.
[13]
O. Domínguez-Renedo, M. E. B. Calvo, M. A. Alonso-Lomillo, and M. J. Arcos-Martínez, “Oxcarbazepine analysis by adsorptive stripping voltammetry using silver nanoparticle-modified carbon screen-printed electrodes,” Sensor Letters, vol. 8, no. 2, pp. 268–272, 2010.
[14]
B. Paw and K. Wo?, “Development and validation of a capillary electrophoresis method for determination of oxcarbazepine and zonisamide in pharmaceuticals,” Journal of Pre-Clinical and Clinical Research, vol. 2, no. 2, pp. 157–159, 2008.
[15]
B. G. Gowda, M. B. Melwanki, and J. Seetharamappa, “Spectrophotometric determination of certain vicinal dihydroxybenzene derivatives in pharmaceutical preparations,” Analytical Sciences, vol. 17, no. 4, pp. 533–534, 2001.
[16]
K. C. Ramesh, B. G. Gowda, M. B. Melwanki, J. Seetharamappa, and J. Keshavayya, “Extractive spectrophotometric determination of antiallergic drugs in pharmaceutical formulations using bromopyrogallol red and bromothymol blue,” Analytical Sciences, vol. 17, no. 9, pp. 1101–1103, 2001.
[17]
B. G. Gowda, M. B. Melwanki, and J. Seetharamappa, “Extractive spectrophotometric determination of ceterizine HCl in pharmaceutical preparations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 25, no. 5-6, pp. 1021–1026, 2001.
[18]
B. S. Nagaralli, J. Seetharamappa, and M. B. Melwanki, “Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations,” Journal of Pharmaceutical and Biomedical Analysis, vol. 29, no. 5, pp. 859–864, 2002.
[19]
M. Gandhimathi and T. K. Ravi, “Use of Folin-Ciocalteu phenol reagent and 3-methyl-2-benzothiazolinone hydrazine hydrochloride in the determination of oxcarbazepine in pharmaceuticals,” Acta Pharmaceutica, vol. 58, no. 1, pp. 111–118, 2008.
[20]
C. S. Ramaa, P. P. Chothe, A. A. Naik, and V. J. Kadam, “Spectrophotometric method for the estimation of oxcarbazepine in tablets,” Indian Journal of Pharmaceutical Sciences, vol. 68, no. 2, pp. 265–266, 2006.
[21]
M. A. Sathish and G. Nagendrappa, “Spectrophotometric determination of oxcarbazepine in pharmaceutical formulations,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 3, pp. 93–98, 2010.
[22]
M. Hudlicky, Preparatvni Reakce v Organicke Chemii II, Halogenace a Dehalogenace, NCSAV, Prague, Czech Republic, 1955.
[23]
“ICH harmonised tripartite guideline, validation of analytical procedures: text and methodology Q2(R 1),” in Proceedings of the International Conference on Hormonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, London, UK, November 2005.
[24]
J. Inczedy, T. Lengyel, and A. M. Ure, IUPAC Compendium of Analytical Nomenclature: Definitive Rules, Blackwell Science, Boston, Mass, USA, 1998.