|
福州大学学报(自然科学版) 2018
欧氏空间中常高阶平均曲率紧致凸超曲面与高斯映像
|
Abstract:
针对(n+1)维欧氏空间Rn+1中紧致无边凸超曲面M,利用一个已知的积分公式,并提出一种新的技巧,证明了:如果存在一个整数r(1≤r≤n-1) 使得M的第r阶高阶平均曲率Hr是常数,并且M的高斯映照是到标准单位球面Sn的拓扑同胚,则M全脐.
For an oriented,compact and convex hypersurface M without boundary in the (n+1)dimensional Euclidean space Rn+1,we apply a known integral formula and put out a new skill to prove that if there exits an integer r (1≤r≤n-1) such that the r-mean curvature Hr is a constant and if the Gauss map of M is a topological homeomorphism onto the standard unit sphere Sn,then M is totally umbilical