全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于模糊哈希特征表示的恶意软件聚类方法
A malware variant clustering method based on fuzzy hash

Keywords: 恶意软件家族 聚类 模糊哈希 特征提取
Malware family Clustering Fuzzy Hash Extract features

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,每年被拦截到的新型恶意软件变种数已达千万级别,在线恶意软件仓库Virus Share上存储的未分类的恶意软件数量也超过了2700万。将恶意软件按一定的行为模式进行聚类,不仅使新型攻击更易被检测出来,也有助于及时获取恶意软件的发展态势并做出防范措施。为此,本文提出了一种高效的恶意软件聚类方法,对恶意样本进行动态分析并筛选出包括导入、导出函数、软件字符串、运行时资源访问记录以及系统API调用序列等特征,然后将这些特征转换为模糊哈希,选用DPC聚类算法对恶意软件样本进行聚类。并将聚类个数、准确率、召回率、调和平均值以及熵作为聚类效果的外部评估指标,将簇内紧密度以及簇间区分度作为内部评估指标,实验结果表明,与Symantec和ESET-NOD32的分类结果相比,本文提出的方法的聚类家族个数与人工标记的数量最为接近,调和平均值分别提升11.632%,2.41%。
Internet Security companies collect tens of millions of new malware variants each year, Virus Share, the online malware repository, has stored more than 27 million unlabeled malwares. Clustering malware variant according to certain behavior patterns, not only makes the new attack easier to be detected, but also helps us to obtain the malware trends in time and take the corresponding preventive measures. Therefore, this paper proposes a malware variant clustering method which use dynamic analysis technology to extract malware features, including import and export function name, strings, system resource records and system calls, then convert these features to the fuzzy hashes, finally clustering malware samples through the DPC clustering algorithm. We select the number of clusters, precision, recall, F-score and entropy as external criteria, select the intra-cluster cohesion and inter-cluster separation as internal criteria. The experimental results demonstrate that compared with Symantec and ESET-NOD32, the F-score obtained in this paper increased by 11.632% and 2.41%, and the number of clusters is closest to the artificial labeled

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133