全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一类具有奇性的时滞平均曲率方程周期解的存在性问题
Existence of positive periodic solutions for a delay prescribed mean curvature equation with a singularity

Keywords: 周期解,重合度拓展定理,Li\'{e}nard型平均曲率方程 奇性
Positive periodic solutions Continuation theorem Prescribed mean curvature equation Singularity

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了如下具有奇性的Li\'{e}nard型时滞平均曲率方程$$(\frac{u'(t)}{\sqrt{1+(u'(t))^2}})'+f(u(t))u'(t)+g( u(t-\gamma))=e(t)$$的周期解存在性问题. 运用Mawhin重合度扩展定理, 获得了该方程至少存在一个$T$-周期正解的新结果, 最后给出一个例子来验证文章主要结论的有效性. 本文的研究丰富了时滞平均曲率方程的内容.
In this paper, we study the existence of periodic solutions to the following prescribed mean curvature Li\'{e}nard equation with a singularity and a deviating argument $$(\frac{u'(t)}{\sqrt{1+(u'(t))^2}})'+f(u(t))u'(t)+g( u(t-\gamma))=e(t)$$ And by applying Mawhin's continuation theorem, a new result on the existence of positive $T-$periodic solution for this equation is obtained. An example is given to illustrate the effectiveness of our results. Our research enriches the contents of prescribed mean curvature equations

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133