全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于贝叶斯与因果岭回归的物联网流量预测模型
The flow prediction model in Internet of Things based on Bayesian and causal ridge regression

Keywords: 物联网 流量 预测 贝叶斯 因果岭回归
Internet of Things Flow Prediction Bayesian Causal Ridge Regression

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对物联网流量预测困难的问题,提出了一种基于贝叶斯与因果岭回归的物联网流量预测模型.该模型首先根据物联网流量传输波动影响链路变化等因果关系,深入刻画物联网流量局部特征,并利用薛定谔方程优化识别模型,同时结合贝叶斯拟合因果关系联合岭回归方法建立预测模型.最后,通过仿真实验研究了该模型与其他方法之间的性能状况,结果表明该模型在平均队列、阻塞率和延迟率等方面具有较大优势.
In order to solve the flow prediction problem of Internet of Things, a flow In order to solve the flow prediction problem of Internet of Things, a flow prediction model is proposed based on Bayesian and causal ridge regression.At first,the local characteristic of flow is deeply depicted considering the causal relationship between the fluctuation of the traffic flow and the change of the link;in addition, Schrodinger equation is used to optimize the recognition model.Then,the prediction model is built with Bayesian and causal ridge regression.Finally,the performance of this model and other methods is studied by simulation experiment.The results show that this model has a great advantage in average queue,blocking rate,delay rate and so on

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133