|
- 2016
三阶非线性微分方程边值问题正解的存在性
|
Abstract:
本文应用锥上的不动点定理研究了三阶四点边值问题u'''(t)+f(t,u(t))=0,t∈[0,1],u'(0)=αu(ξ ),u'(1)+βu(η)=0,u''(0)=0正解的存在性。其中α,β是正的参数,0≤ξ<η≤1.在f满足适当的增长条件下,通过对核函数得到上下界估计,获得了该问题正解的存在性。
In this paper, by applying the fixed point theorem in cone, we study the existence of positive solutions of third-order four-point boundary value problemu'''(t)+f(t,u(t))=0,t∈[0,1],u'(0)=αu(ξ ),u'(1)+βu(η)=0,u''(0)=0,whereα,βare positive parameters,0≤ξ<η≤1.Under some conditions on f,we obtained the existence of positive solutions of the problem (1.1)by estimating the upper bounds and lower bounds for kernel function