|
- 2015
全纯函数差分算子的值分布
|
Abstract:
本文主要研究了全纯函数的差分算子分担一个值的唯一性问题,并且得到了:若f与g为超级ρ2<1的两个非常数的超越全纯函数, n,k,m为满足n≥5k+4m+13的整数, c是满足f(z+c)-f(z)≠0且g(z+c)-g(z)??0的非零常数,则若f(z)n(f(z)m-1)(f(z+c)-f(z))(k)与g(z)n(g(z)m-1)(g(z+c)-g(z))(k)IM分担1, 则f=tg, 其中t为满足tn+1=1与tm=1的常数.
In this paper, we deal with the value distribution of difference operators of entire functions and obtain that: Let f and g be transcendental entire functions of ρ2<1, n,k,m are three integers satisfying n≥5k+4m+13, c is a nonzero complex constant such that f(z+c)-f(z)≠0 and g(z+c)-g(z)??0,and if f(z)n(f(z)m-1)(f(z+c)-f(z))(k) and g(z)n(g(z)m-1)(g(z+c)-g(z))(k)share 1 IM, then f=tg for a constant t with tn+1=1 and tm=1