全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

DOI: 10.1155/2011/862692

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pyrene-modified dextrin (Py-Dex) was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs) were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers. 1. Introduction Chirality plays an important role in various fields such as pharmaceuticals and biotechnology. The booming development of chirality researches demands rapid and sensitive analytical tools for chiral assays. During the past several decades, numerous studies have been focused on chiral analysis resulting in various techniques including various types of chromatography [1], capillary electrophoresis [2, 3], and chiral sensors [4]. Amongst those methods, the use of fluorescence has attracted much interest because it can offer the advantages of real-time analysis, high sensitivity, multiple sensing modes, and remote detection capabilities [5]. Chiral selective fluorescent methods are especially useful for the rapid and high-throughput assay of the enantiomeric composition of chiral substrates [6]. Generally, such a fluorescent method composed of a fluorophore and a chiral binding site. The chirality of the binding site could be achieved by introducing chiral selectors into the binding site. Significantly, some chiral cyclic compounds such as crown ethers, calixarenes, and cyclodextrins (CDs) have been found to be versatile chiral selectors through chiral selective inclusion. Thus, these compounds could be fabricated into fluorescence sensors for chiral recognition. On the other hand, as a result of the extraordinary chemical, electronic, and mechanical properties of single-walled carbon nanotubes (SWNTs), SWNTs-mediated self-assemblies are

References

[1]  W. Weng, H. Guo X., F. P. Zhan et al., “Chromatographic enantioseparations of binaphthyl compounds on an immobilized polysaccharide-based chiral stationary phase,” Journal of Chromatography A, vol. 1210, no. 2, pp. 178–184, 2008.
[2]  W.-L. Wei, B.-Y. Guo, and J.-M. Lin, “Ultra-high concentration of amylose for chiral separations in capillary electrophoresis,” Journal of Chromatography A, vol. 1216, no. 9, pp. 1484–1489, 2009.
[3]  W. Wei, B. Guo, and J.-M. Lin, “Ultra-high concentration of amylose for chiral separations in capillary electrophoresis,” Electrophoresis, vol. 30, no. 9, pp. 1380–1387, 2009.
[4]  H. L. Liu, Q. Peng, Y. D. Wu et al., “Highly enantioselective recognition of structurally diverse α-Hydroxycarboxylic acids using a fluorescent sensor,” Angewandte Chemie—International Edition, vol. 49, no. 3, pp. 602–606, 2010.
[5]  H.-L. Liu, Q. Peng, Y.-D. Wu, et al., “Highly enantioselective recognition of structurally diverse α-hydroxycarboxylic acids using a fluorescent sensor,” Angewandte Chemie, vol. 122, no. 3, pp. 612–616, 2010.
[6]  L. Pu, “Fluorescence of organic molecules in chiral recognition,” Chemical Reviews, vol. 104, no. 3, pp. 1687–1716, 2004.
[7]  V. Sgobba and D. M. Guldi, “Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics,” Chemical Society Reviews, vol. 38, no. 1, pp. 165–184, 2009.
[8]  R. H. Yang, Z. W. Tang, J. L. Yan et al., “Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions,” Analytical Chemistry, vol. 80, no. 19, pp. 7408–7413, 2008.
[9]  R. S. Swathi and K. L. Sebastian, “Excitation energy transfer from a fluorophore to single-walled carbon nanotubes,” Journal of Chemical Physics, vol. 132, no. 10, pp. 104502–104513, 2010.
[10]  C. Ehli, G. M. A. Rahman, N. Jux et al., “Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids,” Journal of the American Chemical Society, vol. 128, no. 34, pp. 11222–11231, 2006.
[11]  Y. Liu, Z. L. Yu, Y. M. Zhang, D. S. Guo, and Y. P. Liu, “Supramolecular architectures of β-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation,” Journal of the American Chemical Society, vol. 130, no. 31, pp. 10431–10439, 2008.
[12]  A. Star, D. W. Steuerman, J. R. Heath, and J. F. Stoddart, “Starched carbon nanotubes,” Angewandte Chemie—International Edition, vol. 41, no. 14, pp. 2508–2512, 2002.
[13]  R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, and R. Yerushalmi-Rozen, “Stabilization of individual carbon nanotubes in aqueous solutions,” Nano Letters, vol. 2, no. 1, pp. 25–28, 2002.
[14]  D. M. Guldi, G. M. A. Rahman, F. Zerbetto, and M. Prato, “Carbon nanotubes in electron donor—acceptor nanocomposites,” Accounts of Chemical Research, vol. 38, no. 11, pp. 871–878, 2005.
[15]  M. Stefansson and M. Novotny, “Separation of complex oligosaccharide mixtures by capillary electrophoresis in the open-tubular format,” Analytical Chemistry, vol. 66, no. 7, pp. 1134–1140, 1994.
[16]  M. Stefansson and M. Novotny, “Modification of the electrophoretic mobility of neutral and charged polysaccharides,” Analytical Chemistry, vol. 66, no. 20, pp. 3466–3471, 1994.
[17]  J. Sudor and M. V. Novotny, “End-label free-solution electrophoresis of the low molecular weight heparins,” Analytical Chemistry, vol. 69, no. 16, pp. 3199–3204, 1997.
[18]  O.-K. Kim, J. Je, J. W. Baldwin, S. Kooi, P. E. Pehrsson, and L. J. Buckley, “Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose,” Journal of the American Chemical Society, vol. 125, no. 15, pp. 4426–4427, 2003.
[19]  M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza, and R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes,” Carbon, vol. 40, no. 12, pp. 2043–2061, 2002.
[20]  C. Fu, L. Meng, and Q. Lu, “'Hierarchical self-assembly' of helical amylose/SWNTs complex,” Science in China, Series B, vol. 51, no. 3, pp. 269–274, 2008.
[21]  G. Chambers, C. Carroll, G. F. Farrell et al., “Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes,” Nano Letters, vol. 3, no. 6, pp. 843–846, 2003.
[22]  C. A. Dyke and J. M. Tour, “Unbundled and highly functionalized carbon nanotubes from aqueous reactions,” Nano Letters, vol. 3, no. 9, pp. 1215–1218, 2003.
[23]  Y. Tomonari, H. Murakami, and N. Nakashima, “Solubilization of single-walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water—strategy for the design of high-performance solubilizers,” Chemistry—A European Journal, vol. 12, no. 15, pp. 4027–4034, 2006.
[24]  R. B. Martin, L. W. Qu, Y. Lin et al., “Functionalized carbon nanotubes with tethered pyrenes: synthesis and photophysical properties,” Journal of Physical Chemistry B, vol. 108, no. 31, pp. 11447–11453, 2004.
[25]  G. G. Gelders, L. Bijnens, A. M. Loosveld, A. Vidts, and J. A. Delcour, “Fractionation of starch hydrolysates into dextrins with narrow molecular mass distribution and their detection by high-performance anion-exchange chromatography with pulsed amperometric detection,” Journal of Chromatography A, vol. 992, no. 1-2, pp. 75–83, 2003.
[26]  G. Nelson, G. Patonay, and I. M. Warner, “Effects of selected alcohols on cyclodextrin inclusion complexes of pyrene using fluorescence lifetime measurements,” Analytical Chemistry, vol. 60, no. 3, pp. 274–279, 1988.
[27]  T. Yorozu, M. Hoshino, and M. Imamura, “Fluorescence studies of pyrene inclusion complexes with α-, β-, and γ-cyclodextrins in aqueous solutions. Evidence for formation of pyrene dimer in γ-cyclodextrin cavity,” Journal of Physical Chemistry, vol. 86, no. 22, pp. 4426–4429, 1982.
[28]  G. Patonay, A. Shapira, P. Diamond, and I. M. Warner, “A systematic study of pyrene inclusion complexes with α-, β-, and γ-cyclodextrins,” Journal of Physical Chemistry, vol. 90, no. 9, pp. 1963–1966, 1986.
[29]  M. V. Rekharsky and Y. Inoue, “Complexation thermodynamics of cyclodextrins,” Chemical Reviews, vol. 98, no. 5, pp. 1875–1917, 1998.
[30]  R. Freeman, T. Finder, L. Bahshi, and I. Willner, “β-cyclodextrin-modified cdse/zns quantum dots for sensing and chiroselective analysis,” Nano Letters, vol. 9, no. 5, pp. 2073–2076, 2009.
[31]  L. Chi, J. Z. Zhao, and T. D. James, “Chiral mono boronic acid as fluorescent enantioselective sensor for mono α-hydroxyl carboxylic acids,” Journal of Organic Chemistry, vol. 73, no. 12, pp. 4684–4687, 2008.
[32]  J. Z. Zhao, M. G. Davidson, M. F. Mahon, G. Kociok-K?hn, and T. D. James, “An enantioselective fluorescent sensor for sugar acids,” Journal of the American Chemical Society, vol. 126, no. 49, pp. 16179–16186, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133