全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Promising Genetic Biomarkers of Preclinical Alzheimer's Disease: The Influence of APOE and TOMM40 on Brain Integrity

DOI: 10.1155/2012/421452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Finding biomarkers constitutes a crucial step for early detection of Alzheimer's disease (AD). Brain imaging techniques have revealed structural alterations in the brain that may be phenotypic in preclinical AD. The most prominent polymorphism that has been associated with AD and related neural changes is the Apolipoprotein E (APOE) ε4. The translocase of outer mitochondrial membrane 40 (TOMM40), which is in linkage disequilibrium with APOE, has received increasing attention as a promising gene in AD. TOMM40 also impacts brain areas vulnerable in AD, by downstream apoptotic processes that forego extracellular amyloid beta aggregation. The present paper aims to extend on the mitochondrial influence in AD pathogenesis and we propose a TOMM40-induced disconnection of the medial temporal lobe. Finally, we discuss the possibility of mitochondrial dysfunction being the earliest pathophysiological event in AD, which indeed is supported by recent findings. 1. Introduction Alzheimer’s Disease (AD) is one of the leading causes of dementia today and it poses an immense societal challenge as the prevalence is expected to continue to rise [1]. This makes it imperative to identify early preclinical changes in AD with high accuracy, in order for intervention strategies to yield effective outcome and to allow affected individuals to partake in an active treatment plan [2–5]. AD is characterized by early pathological changes in the brain, including senile plaques, neurofibrillary tangles, synapse, and neuronal loss. Neurofibrillary tangle formation may initiate in subcortical nuclei such as the dorsal raphe and locus coeruleus, prior to spreading to transentorhinal regions [6, 7]. Findings also support that pathological changes in AD commence in the medial temporal lobe (MTL) [8–10], primarily in the entorhinal cortex (ERC) and hippocampus (HC) [11–13], which undergo initial gray matter (GM) loss. Recently, attention has also been directed towards the impact of pathological mechanisms on white matter (WM), as up to 50% of AD cases present with global WM deterioration in neuropathological examinations [14, 15]. The temporal succession of GM and WM changes in preclinical AD remains to be determined; so far there is support for both primary and secondary WM changes within the MTL [16, 17]. MCI is regarded as a prodromal state of AD, where individuals present with subjective memory complaints and/or objective memory impairment, but are still intact in daily life and do not meet current AD diagnostic criteria [2, 18, 19]. Amnestic type MCI (aMCI), where memory impairment is

References

[1]  L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003.
[2]  R. C. Petersen, R. Doody, A. Kurz et al., “Current concepts in mild cognitive impairment,” Archives of Neurology, vol. 58, no. 12, pp. 1985–1992, 2001.
[3]  C. Qiu, M. Kivipelto, H. Aguero-Torres, B. Winblad, and L. Fratiglioni, “Risk and protective effects of the APOE gene towards Alzheimer's disease in the Kungsholmen project: variation by age and sex,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 6, pp. 828–833, 2004.
[4]  R. C. Petersen, “Clinical trials for early (pre-dementia) Alzheimer's disease: a case for mild cognitive impairment,” The Journal of Nutrition, Health and Aging, vol. 14, no. 4, pp. 304–305, 2010.
[5]  J. W. Anderson and M. Schmitter-Edgecombe, “Mild cognitive impairment and feeling-of-knowing in episodic memory,” Journal of Clinical and Experimental Neuropsychology, vol. 32, no. 5, pp. 505–514, 2010.
[6]  L. T. Grinberg, U. Rub, R. E. Ferretti et al., “The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer's disease. A precocious onset?” Neuropathology and Applied Neurobiology, vol. 35, no. 4, pp. 406–416, 2009.
[7]  H. Braak and K. Del Tredici, “The pathological process underlying Alzheimer's disease in individuals under thirty,” Acta Neuropathologica, vol. 121, no. 2, pp. 171–181, 2011.
[8]  D. K. Johnson, W. Barrow, R. Anderson et al., “Diagnostic utility of cerebral white matter integrity in early Alzheimer's disease,” International Journal of Neuroscience, vol. 120, no. 8, pp. 544–550, 2010.
[9]  A. T. Du, N. Schuff, X. P. Zhu et al., “Atrophy rates of entorhinal cortex in AD and normal aging,” Neurology, vol. 60, no. 3, pp. 481–486, 2003.
[10]  H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991.
[11]  N. Raz and K. M. Rodrigue, “Differential aging of the brain: patterns, cognitive correlates and modifiers,” Neuroscience and Biobehavioral Reviews, vol. 30, no. 6, pp. 730–748, 2006.
[12]  L. Serra, M. Cercignani, D. Lenzi et al., “Grey and white matter changes at different stages of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 147–159, 2010.
[13]  C. Pennanen, M. Kivipelto, S. Tuomainen et al., “Hippocampus and entorhinal cortex in mild cognitive impairment and early AD,” Neurobiology of Aging, vol. 25, no. 3, pp. 303–310, 2004.
[14]  G. Bartzokis, J. L. Cummings, D. Sultzer, V. W. Henderson, K. H. Nuechterlein, and J. Mintz, “White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study,” Archives of Neurology, vol. 60, no. 3, pp. 393–398, 2003.
[15]  P. M. Thompson, M. S. Mega, R. P. Woods et al., “Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas,” Cerebral Cortex, vol. 11, no. 1, pp. 1–16, 2001.
[16]  L. O'Dwyer, F. Lamberton, A. L. Bokde et al., “Using diffusion tensor imaging and mixed-effects models to investigate primary and secondary white matter degeneration in Alzheimer's disease and mild cognitive impairment,” Journal of Alzheimer's Disease, vol. 26, no. 4, pp. 667–682, 2011.
[17]  C. E. Sexton, U. G. Kalu, N. Filippini, C. E. Mackay, and K. P. Ebmeier, “A meta-analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer's disease,” Neurobiology of Aging, vol. 32, no. 12, pp. 2322.e5–2322.e18, 2011.
[18]  C. Flicker, S. H. Ferris, and B. Reisberg, “Mild cognitive impairment in the elderly: predictors of dementia,” Neurology, vol. 41, no. 7, pp. 1006–1009, 1991.
[19]  R. C. Petersen, G. E. Smith, S. C. Waring, R. J. Ivnik, E. G. Tangalos, and E. Kokmen, “Mild cognitive impairment: clinical characterization and outcome,” Archives of Neurology, vol. 56, no. 3, pp. 303–308, 1999.
[20]  R. C. Petersen, R. O. Roberts, D. S. Knopman et al., “Mild cognitive impairment: ten years later,” Archives of Neurology, vol. 66, no. 12, pp. 1447–1455, 2009.
[21]  S. Gauthier, B. Reisberg, M. Zaudig et al., “Mild cognitive impairment,” Lancet, vol. 367, no. 9518, pp. 1262–1270, 2006.
[22]  B. Dubois and M. L. Albert, “Amnestic MCI or prodromal Alzheimer's disease?” Lancet Neurology, vol. 3, no. 4, pp. 246–248, 2004.
[23]  C. R. Jack, D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010.
[24]  M. Tondelli, G. K. Wilcock, P. Nichelli, C. A. De Jager, M. Jenkinson, and G. Zamboni, “Structural MRI changes detectable up to ten years before clinical Alzheimer's disease,” Neurobiology of Aging, vol. 33, no. 4, pp. e825–e836, 2012.
[25]  L. B?ckman, S. Jones, A. K. Berger, E. J. Laukka, and B. J. Small, “Cognitive impairment in preclinical Alzheimer's disease: a meta-analysis,” Neuropsychology, vol. 19, no. 4, pp. 520–531, 2005.
[26]  J. L. Stein, X. Hua, J. H. Morra et al., “Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer's disease,” NeuroImage, vol. 51, no. 2, pp. 542–554, 2010.
[27]  S. G. Potkin, G. Guffanti, A. Lakatos et al., “Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer's Disease,” PLoS One, vol. 4, no. 8, article e6501, 2009.
[28]  A. D. Roses, “On the discovery of the genetic association of apolipoprotein E genotypes and common late-onset Alzheimer disease,” Journal of Alzheimer's Disease, vol. 9, no. 3, pp. 361–366, 2006.
[29]  M. Pievani, S. Galluzzi, P. M. Thompson, P. E. Rasser, M. Bonetti, and G. B. Frisoni, “APOE4 is associated with greater atrophy of the hippocampal formation in Alzheimer's disease,” NeuroImage, vol. 55, no. 3, pp. 909–919, 2011.
[30]  A. D. Roses, M. W. Lutz, H. Amrine-Madsen et al., “A TOMM40 variable-length polymorphism predicts the age of late-onset Alzheimer's disease,” Pharmacogenomics Journal, vol. 10, no. 5, pp. 375–384, 2010.
[31]  A. D. Roses, “An inherited variable poly-T repeat genotype in TOMM40 in Alzheimer disease,” Archives of Neurology, vol. 67, no. 5, pp. 536–541, 2010.
[32]  H. Li, S. Wetten, L. Li et al., “Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease,” Archives of Neurology, vol. 65, no. 1, pp. 45–53, 2008.
[33]  R. Abraham, V. Moskvina, R. Sims, et al., “A genome-wide association study for late-onset Alzheimer's disease using DNA pooling,” Biomedcentral Medical Genomics, vol. 1, article 44, 2008.
[34]  A. Grupe, R. Abraham, Y. Li et al., “Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants,” Human Molecular Genetics, vol. 16, no. 8, pp. 865–873, 2007.
[35]  D. Harold, R. Abraham, P. Hollingworth et al., “Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease,” Nature Genetics, vol. 41, no. 10, pp. 1088–1093, 2009.
[36]  T. M. Feulner, S. M. Laws, P. Friedrich et al., “Examination of the current top candidate genes for AD in a genome-wide association study,” Molecular Psychiatry, vol. 15, no. 7, pp. 756–766, 2010.
[37]  C. E. Yu, H. Seltman, E. R. Peskind et al., “Comprehensive analysis of APOE and selected proximate markers for late-onset Alzheimer's disease: patterns of linkage disequilibrium and disease/marker association,” Genomics, vol. 89, no. 6, pp. 655–665, 2007.
[38]  M. Mancuso, V. Calsolaro, D. Orsucci, et al., “Mitochondria, cognitive impairment, and Alzheimer's disease,” International Journal of Alzheimer’s Disease, vol. 2009, Article ID 951548, 8 pages, 2009.
[39]  L. Devi, B. M. Prabhu, D. F. Galati, N. G. Avadhani, and H. K. Anandatheerthavarada, “Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer's disease brain is associated with mitochondrial dysfunction,” Journal of Neuroscience, vol. 26, no. 35, pp. 9057–9068, 2006.
[40]  R. H. Swerdlow, “Brain aging, Alzheimer's disease, and mitochondria,” Biochimica et Biophysica Acta, vol. 1812, no. 12, pp. 1630–1639, 2011.
[41]  S. J. Baloyannis, “Mitochondria are related to synaptic pathology in Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 305395, 7 pages, 2011.
[42]  N. L. Pedersen, S. F. Posner, and M. Gatz, “Multiple-threshold models for genetic influences on age of onset for Alzheimer disease: findings in swedish twins,” American Journal of Medical Genetics - Neuropsychiatric Genetics, vol. 105, no. 8, pp. 724–728, 2001.
[43]  R. W. Mahley, K. H. Weisgraber, and Y. Huang, “Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5644–5651, 2006.
[44]  L. B?ckman, “Memory and cognition in preclinical dementia: what we know and what we do not know,” Canadian Journal of Psychiatry, vol. 53, no. 6, pp. 354–360, 2008.
[45]  G. B. Karas, P. Scheltens, S. A. Rombouts et al., “Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease,” NeuroImage, vol. 23, no. 2, pp. 708–716, 2004.
[46]  C. D. Smith, H. Chebrolu, D. R. Wekstein et al., “Brain structural alterations before mild cognitive impairment,” Neurology, vol. 68, no. 16, pp. 1268–1273, 2007.
[47]  A. M. Fjell, K. B. Walhovd, C. Fennema-Notestine et al., “CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer's disease,” Journal of Neuroscience, vol. 30, no. 6, pp. 2088–2101, 2010.
[48]  T. Tapiola, C. Pennanen, M. Tapiola et al., “MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study,” Neurobiology of Aging, vol. 29, no. 1, pp. 31–38, 2008.
[49]  T. R. Stoub, M. Bulgakova, S. Leurgans et al., “MRI predictors of risk of incident Alzheimer disease: a longitudinal study,” Neurology, vol. 64, no. 9, pp. 1520–1524, 2005.
[50]  T. R. Stoub, L. deToledo-Morrell, G. T. Stebbins, S. Leurgans, D. A. Bennett, and R. C. Shah, “Hippocampal disconnection contributes to memory dysfunction in individuals at risk for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 10041–10045, 2006.
[51]  G. Chételat, M. Fouquet, G. Kalpouzos et al., “Three-dimensional surface mapping of hippocampal atrophy progression from MCI to AD and over normal aging as assessed using voxel-based morphometry,” Neuropsychologia, vol. 46, no. 6, pp. 1721–1731, 2008.
[52]  T. R. Stoub, E. J. Rogalski, S. Leurgans, D. A. Bennett, and L. deToledo-Morrell, “Rate of entorhinal and hippocampal atrophy in incipient and mild AD: relation to memory function,” Neurobiology of Aging, vol. 31, no. 7, pp. 1089–1098, 2010.
[53]  I. Driscoll, C. Davatzikos, Y. An et al., “Longitudinal pattern of regional brain volume change differentiates normal aging from MCI,” Neurology, vol. 72, no. 22, pp. 1906–1913, 2009.
[54]  G. Chételat, B. Desgranges, B. Landeau et al., “Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer's disease,” Brain, vol. 131, no. 1, pp. 60–71, 2008.
[55]  R. L. Buckner, A. Z. Snyder, B. J. Shannon et al., “Molecular, structural, and functional characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and memory,” Journal of Neuroscience, vol. 25, no. 34, pp. 7709–7717, 2005.
[56]  A. M. Fjell, I. K. Amlien, L. T. Westlye et al., “CSF biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate Alzheimer's disease but not a fronto-striatal network affected by healthy aging,” NeuroImage, vol. 49, no. 2, pp. 1820–1830, 2010.
[57]  G. Karas, J. Sluimer, R. Goekoop et al., “Amnestic mild cognitive impairment: structural MR imaging findings predictive of conversion to Alzheimer disease,” American Journal of Neuroradiology, vol. 29, no. 5, pp. 944–949, 2008.
[58]  A. M. Hogan, F. Vargha-Khadem, D. E. Saunders, F. J. Kirkham, and T. Baldeweg, “Impact of frontal white matter lesions on performance monitoring: ERP evidence for cortical disconnection,” Brain, vol. 129, no. 8, pp. 2177–2188, 2006.
[59]  D. H. Salat, D. S. Tuch, A. J. van der Kouwe et al., “White matter pathology isolates the hippocampal formation in Alzheimer's disease,” Neurobiology of Aging, vol. 31, no. 2, pp. 244–256, 2010.
[60]  P. Kalus, J. Slotboom, J. Gallinat et al., “Examining the gateway to the limbic system with diffusion tensor imaging: the perforant pathway in dementia,” NeuroImage, vol. 30, no. 3, pp. 713–720, 2006.
[61]  N. Villain, M. Fouquet, J. C. Baron et al., “Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease,” Brain, vol. 133, no. 11, pp. 3301–3314, 2010.
[62]  D. H. Salat, D. N. Greve, J. L. Pacheco et al., “Regional white matter volume differences in nondemented aging and Alzheimer's disease,” NeuroImage, vol. 44, no. 4, pp. 1247–1258, 2009.
[63]  M. P. Witter, “The perforant path: projections from the entorhinal cortex to the dentate gyrus,” Progress in Brain Research, vol. 163, pp. 43–61, 2007.
[64]  B. Reisberg, E. H. Franssen, S. M. Hasan et al., “Retrogenesis: clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer's and other dementing processes,” European Archives of Psychiatry and Clinical Neuroscience, vol. 249, no. 3, pp. 28–36, 1999.
[65]  K. A. Frazer, S. S. Murray, N. J. Schork, and E. J. Topol, “Human genetic variation and its contribution to complex traits,” Nature Reviews Genetics, vol. 10, no. 4, pp. 241–251, 2009.
[66]  M. Gatz, C. A. Reynolds, L. Fratiglioni et al., “Role of genes and environments for explaining Alzheimer disease,” Archives of General Psychiatry, vol. 63, no. 2, pp. 168–174, 2006.
[67]  W. J. Strittmatter, A. M. Saunders, D. Schmechel et al., “Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 5, pp. 1977–1981, 1993.
[68]  A. Saunders, M. K. Trowers, R. A. Shimkets et al., “The role of apolipoprotein E in Alzheimer's disease: pharmacogenomic target selection,” Biochimica et Biophysica Acta, vol. 1502, no. 1, pp. 85–94, 2000.
[69]  L. A. Farrer, L. A. Cupples, J. L. Haines et al., “Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis,” Journal of the American Medical Association, vol. 278, no. 16, pp. 1349–1356, 1997.
[70]  G. Bartzokis, “Acetylcholinesterase inhibitors may improve myelin integrity,” Biological Psychiatry, vol. 62, no. 4, pp. 294–301, 2007.
[71]  S. M. Hofer, H. Christensen, A. J. Mackinnon et al., “Change in cognitive functioning associated with ApoE genotype in a community sample of older adults,” Psychology of Aging, vol. 17, no. 2, pp. 194–208, 2002.
[72]  L. G. Nilsson, R. Adolfsson, L. B?ckman et al., “The influence of APOE status on episodic and semantic memory: data from a population-based study,” Neuropsychology, vol. 20, no. 6, pp. 645–657, 2006.
[73]  L. Ryan, K. Walther, B. B. Bendlin, L. F. Lue, D. G. Walker, and E. L. Glisky, “Age-related differences in white matter integrity and cognitive function are related to APOE status,” NeuroImage, vol. 54, no. 2, pp. 1565–1577, 2011.
[74]  B. J. Small, C. B. Rosnick, L. Fratiglioni, and L. B?ckman, “Apolipoprotein E and cognitive performance: a meta-analysis,” Psychology and Aging, vol. 19, no. 4, pp. 592–600, 2004.
[75]  G. M. McKhann, D. S. Knopman, H. Chertkow et al., “The diagnosis of dementia due to Alzheimer's disease: recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 263–269, 2011.
[76]  R. Mayeux, A. M. Saunders, S. Shea et al., “Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease,” The New England Journal of Medicine, vol. 338, no. 8, pp. 506–511, 1998.
[77]  L. S. Elias-Sonnenschein, W. Viechtbauer, I. H. Ramakers, F. R. J. Verhey, and P. J. Visser, “Predictive value of APOE-ε4 allele for progression from MCI to AD-type dementia: a meta-analysis,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 10, pp. 1149–1156, 2011.
[78]  L. Jones, D. Harold, and J. Williams, “Genetic evidence for the involvement of lipid metabolism in Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 754–761, 2010.
[79]  V. Hirsch-Reinshagen, B. L. Burgess, and C. L. Wellington, “Why lipids are important for Alzheimer disease?” Molecular and Cellular Biochemistry, vol. 326, no. 1, pp. 121–129, 2009.
[80]  J. Hardy and D. Allsop, “Amyloid deposition as the central event in the aetiology of Alzheimer's disease,” Trends in Pharmacological Sciences, vol. 12, no. 10, pp. 383–388, 1991.
[81]  J. Poirier, “Apoliprotein E in animal models of CNS injury and in Alzheimer's disease,” Trends in Neurosciences, vol. 17, no. 12, pp. 525–530, 1994.
[82]  J. Poirier, “Apolipoprotein E and Alzheimer's disease. A role in amyloid catabolism,” Annals of the New York Academy of Sciences, vol. 924, pp. 81–90, 2000.
[83]  R. H. Swerdlow and S. M. Khan, “A “mitochondrial cascade hypothesis” for sporadic Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 1, pp. 8–20, 2004.
[84]  R. J. Castellani, H. Lee, S. L. Siedlak et al., “Reexamining Alzheimer's disease: evidence for a protective role for amyloid-β protein precursor and amyloid-β,” Journal of Alzheimer's Disease, vol. 18, no. 2, pp. 447–452, 2009.
[85]  L. Shen, S. Kim, S. L. Risacher et al., “Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort,” NeuroImage, vol. 53, no. 3, pp. 1051–1063, 2010.
[86]  T. Espeseth, L. T. Westlye, A. M. Fjell, K. B. Walhovd, H. Rootwelt, and I. Reinvang, “Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E ε 4,” Neurobiology of Aging, vol. 29, no. 3, pp. 329–340, 2008.
[87]  D. Zhang , Y. Wang, L. Zhou, H. Yuan, and D. Shen, “Multimodal classification of Alzheimer's disease and mild cognitive impairment,” NeuroImage, vol. 53, no. 3, pp. 856–867, 2011.
[88]  M. Spampinato, Z. Rumboldt, R. J. Hosker, and J. E. Mintzer, “Apolipoprotein E and gray matter volume loss in patients with mild cognitive impairment and Alzheimer disease,” Radiology, vol. 258, no. 3, pp. 843–852, 2011.
[89]  H. Zhang, J. N. Trollor, W. Wen et al., “Grey matter atrophy of basal forebrain and hippocampus in mild cognitive impairment,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 82, no. 5, pp. 487–493, 2011.
[90]  B. B. Bendlin, M. L. Ries, E. Canu et al., “White matter is altered with parental family history of Alzheimer's disease,” Developmental Neuropsychology, vol. 35, no. 3, pp. 257–277, 2010.
[91]  M. Pievani, P. E. Rasser, S. Galluzzi et al., “Mapping the effect of APOE ε 4 on gray matter loss in Alzheimer's disease in vivo,” NeuroImage, vol. 45, no. 4, pp. 1090–1098, 2009.
[92]  N. Filippini, A. Rao, S. Wetten et al., “Anatomically-distinct genetic associations of APOE ε4 allele load with regional cortical atrophy in Alzheimer's disease,” NeuroImage, vol. 44, no. 3, pp. 724–728, 2009.
[93]  R. Barber, A. Gholkar, P. Scheltens et al., “Apolipoprotein E ε 4 allele, temporal lobe atrophy, and white matter lesions in late-life dementias,” Archives of Neurology, vol. 56, no. 8, pp. 961–965, 1999.
[94]  J. He, S. Farias, O. Martinez, B. Reed, D. Mungas, and C. DeCarli, “Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes,” Archives of Neurology, vol. 66, no. 11, pp. 1393–1399, 2009.
[95]  A. Hamalainen, M. Grau-Olivares, S. Tervo et al., “Apolipoprotein E ε 4 allele is associated with increased atrophy in progressive mild cognitive impairment: a voxel-based morphometric study,” Neurodegenerative Diseases, vol. 5, no. 3-4, pp. 186–189, 2008.
[96]  G. Bartzokis, P. H. Lu, D. H. Geschwind, N. Edwards, J. Mintz, and J. L. Cummings, “Apolipoprotein E genotype and age-related myelin breakdown in healthy individuals: implications for cognitive decline and dementia,” Archives of General Psychiatry, vol. 63, no. 1, pp. 63–72, 2006.
[97]  J. Persson, J. Lind, A. Larsson et al., “Altered brain white matter integrity in healthy carriers of the APOE ε 4 allele: a risk for AD?” Neurology, vol. 66, no. 7, pp. 1029–1033, 2006.
[98]  S. C. Johnson, A. La Rue, B. P. Hermann, et al., “The effect of TOMM40 poly-T length on gray matter volume and cognition in middle-aged persons with APOE epsilon3/epsilon3 genotype,” Alzheimer's & Dementia, vol. 7, no. 4, pp. 456–465, 2011.
[99]  R. Schmidt, H. Schmidt, J. Haybaeck et al., “Heterogeneity in age-related white matter changes,” Acta Neuropathologica, vol. 122, no. 2, pp. 171–185, 2011.
[100]  L. Bertram, M. B. McQueen, K. Mullin, D. Blacker, and R. E. Tanzi, “Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database,” Nature Genetics, vol. 39, no. 1, pp. 17–23, 2007.
[101]  W. Huang, C. Qiu, E. Von Strauss, B. Winblad, and L. Fratiglioni, “APOE genotype, family history of dementia, and Alzheimer disease risk: a 6-year follow-up study,” Archives of Neurology, vol. 61, no. 12, pp. 1930–1934, 2004.
[102]  J. Yang, B. Benyamin, B. P. McEvoy et al., “Common SNPs explain a large proportion of the heritability for human height,” Nature Genetics, vol. 42, no. 7, pp. 565–569, 2010.
[103]  T. B. Kirkwood, H. J. Cordell, and C. E. Finch, “Speed-bumps ahead for the genetics of later-life diseases,” Trends in Genetics, vol. 27, no. 10, pp. 387–388, 2011.
[104]  E. E. Eichler, J. Flint, G. Gibson et al., “Missing heritability and strategies for finding the underlying causes of complex disease,” Nature Reviews Genetics, vol. 11, no. 6, pp. 446–450, 2010.
[105]  M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006.
[106]  M. Mancuso, V. Calsolaro, D. Orsucci, G. Siciliano, and L. Murri, “Is there a primary role of the mitochondrial genome in Alzheimer's disease?” Journal of Bioenergetics and Biomembranes, vol. 41, no. 5, pp. 411–416, 2009.
[107]  H. M. McBride, M. Neuspiel, and S. Wasiak, “Mitochondria: more than just a powerhouse,” Current Biology, vol. 16, no. 14, pp. 551–560, 2006.
[108]  A. Trifunovic, A. Wredenberg, M. Falkenberg et al., “Premature ageing in mice expressing defective mitochondrial DNA polymerase,” Nature, vol. 429, no. 6990, pp. 417–423, 2004.
[109]  R. H. Swerdlow and S. J. Kish, “Mitochondria in Alzheimer's disease,” International Review of Neurobiology, vol. 53, pp. 341–385, 2002.
[110]  R. Sultana and D. A. Butterfield, “Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 5, pp. 441–446, 2009.
[111]  P. H. Reddy, “Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease,” Experimental Neurology, vol. 218, no. 2, pp. 286–292, 2009.
[112]  I. E. Scheffler, Mitochondria, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2008.
[113]  A. D. Humphries, I. C. Streimann, D. Stojanovski et al., “Dissection of the mitochondrial import and assembly pathway for human Tom40,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11535–11543, 2005.
[114]  M. Manczak, T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, and P. H. Reddy, “Mitochondria are a direct site of A β accumulation in Alzheimer's disease neurons: implications for free radical generation and oxidative damage in disease progression,” Human Molecular Genetics, vol. 15, no. 9, pp. 1437–1449, 2006.
[115]  S. Kim, S. Swaminathan, L. Shen, et al., “Genome-wide association study of CSF biomarkers A β1-42, t-τ, and p-τ181p in the ADNI cohort,” Neurology, vol. 76, no. 1, pp. 69–79, 2011.
[116]  M. Ankarcrona, F. Mangialasche, and B. Winblad, “Rethinking Alzheimer's disease therapy: are mitochondria the key?” Journal of Alzheimer's Disease, vol. 20, no. suppl.2, pp. S579–S590, 2010.
[117]  L. Osherovich, “TOMMorrow's AD marke,” Science-Business eXchange, vol. 2, no. 30, 1165 pages, 2009.
[118]  M. G. Hong, A. Alexeyenko, J. C. Lambert, P. Amouyel, and J. A. Prince, “Genome-wide pathway analysis implicates intracellular transmembrane protein transport in Alzheimer disease,” Journal of Human Genetics, vol. 55, no. 10, pp. 707–709, 2010.
[119]  M. Lagergren, L. Fratiglioni, I. R. Hallberg et al., “A longitudinal study integrating population, care and social services data. The swedish national study on aging and care (SNAC),” Aging and Clinical Experimental Research, vol. 16, no. 2, pp. 158–168, 2004.
[120]  B. Ferencz, S. Karlsson, G. Kalpouzos, et al., “Differential influence of APOE TOMM40 on brain integrity and congnition: implications for biomarker potentialin Alzheimer's disease,” in preparation.
[121]  W. J. Strittmatter, K. H. Weisgraber, D. Y. Huang et al., “Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 8098–8102, 1993.
[122]  D. A. Sanan, K. H. Weisgraber, S. J. Russell et al., “Apolipoprotein E associates with β amyloid peptide of Alzheimer's disease to form novel monofibrils. Isoform ApoE4 associates more efficiently than ApoE3,” Journal of Clinical Investigation, vol. 94, no. 2, pp. 860–869, 1994.
[123]  S. Ye, Y. Huang, K. Mullendorff et al., “Apolipoprotein (apo) E4 enhances amyloid β peptide production in cultured neuronal cells: ApoE structure as a potential therapeutic target,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 51, pp. 18700–18705, 2005.
[124]  J. Miquel, A. C. Economos, J. Fleming, and J. E. Johnson, “Mitochondrial role in cell aging,” Experimental Gerontology, vol. 15, no. 6, pp. 575–591, 1980.
[125]  H. V. Remmen and A. Richardson, “Oxidative damage to mitochondria and aging,” Experimental Gerontology, vol. 36, no. 7, pp. 957–968, 2001.
[126]  A. Eckert, K. Schmitt, and J. Gotz, “Mitochondrial dysfunction - the beginning of the end in Alzheimer's disease? Separate and synergistic modes of tau and amyloid-beta toxicity,” Alzheimer's Research and Therapy, vol. 3, no. 2, p. 15, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133