全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Traumatic Brain Injury, Microglia, and Beta Amyloid

DOI: 10.1155/2012/608732

Full-Text   Cite this paper   Add to My Lib

Abstract:

Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer’s Disease (AD). TBI and AD share many pathologic features including chronic inflammation and the accumulation of beta amyloid (Aβ). Data from both AD and TBI studies suggest that microglia play a central role in Aβ accumulation after TBI. This paper focuses on the current research on the role of microglia response to Aβ after TBI. 1. Introduction Recently, there has been growing interest in the association between traumatic brain injury (TBI) and Alzheimer’s Disease (AD). The interest grew from several lines of evidence, including epidemiological studies that demonstrated an association of TBI and the development of AD later in life [1–7] and autopsy studies that showed acute and chronic AD-like pathology in TBI victims [8, 9]. While most of the studies investigating the association of AD and TBI have focused on the accumulation and clearance amyloid-β (Aβ) [2, 8, 9], chronic neuroinflammation is also a common feature of AD and TBI, and microglia likely play a central role [10, 11]. In AD, microglia are recruited to newly formed Aβ plaques, where microglial activation functions as a double-edged sword, promoting beneficial responses such as Aβ clearance [12–14] while also eliciting a proinflammatory response [12]. Similar patterns of microglia activation have been demonstrated both acutely and chronically after TBI [15, 16]. This paper will explore the current research on the role of microglia response to Aβ after TBI. Although there are few studies that directly examine microglial reaction to trauma-induced Aβ, data from TBI and AD experimental and human studies will be used to make an argument for a central role of microglia in acute and chronic responses to Aβ-mediated secondary injury after TBI. 2. General Microglial Response after TBI TBI is a disease process in which mechanical injury initiates cellular and biochemical changes that perpetuate neuronal injury and death over time, a process known as secondary injury. Secondary injury begins minutes after injury and can continue years after the initial insult. Mechanisms implicated in secondary injury after TBI include glutamate excitotoxicity, blood-brain barrier disruption, secondary hemorrhage, ischemia, mitochondrial dysfunction, apoptotic and necrotic cell death, and inflammation [17]. As the primary mediators of the brain’s innate immune response to infection, injury, and disease, microglia react to injury within minutes. In fact, microglia may represent the first line of defense

References

[1]  V. E. Johnson, W. Stewart, and D. H. Smith, “Traumatic brain injury and amyloid-β pathology: a link to Alzheimer's disease?” Nature Reviews Neuroscience, vol. 11, no. 5, pp. 361–370, 2010.
[2]  V. E. Johnson, W. Stewart, D. I. Graham, J. E. Stewart, A. H. Praestgaard, and D. H. Smith, “A neprilysin polymorphism and amyloid-β plaques after traumatic brain injury,” Journal of Neurotrauma, vol. 26, no. 8, pp. 1197–1202, 2009.
[3]  J. A. Mortimer, L. R. French, J. T. Hutton, and L. M. Schuman, “Head injury as a risk factor for Alzheimer's disease,” Neurology, vol. 35, no. 2, pp. 264–267, 1985.
[4]  A. B. Graves, E. White, T. D. Koepsell et al., “The association between head trauma and Alzheimer's disease,” American Journal of Epidemiology, vol. 131, no. 3, pp. 491–501, 1990.
[5]  J. A. Mortimer, C. M. van Duijn, V. Chandra, et al., “Head trauma as a risk factor for Alzheimer's disease: a collaborative re-analysis of case-control studies. EURODEM Risk Factors Research Group,” International Journal of Epidemiology, vol. 20, supplement 2, pp. S28–S35, 1991.
[6]  E. Salib and V. Hillier, “Head injury and the risk of Alzheimer's disease: a case control study,” International Journal of Geriatric Psychiatry, vol. 12, pp. 363–368, 1997.
[7]  Z. Guo, L. A. Cupples, A. Kurz et al., “Head injury and the risk of AD in the MIRAGE study,” Neurology, vol. 54, no. 6, pp. 1316–1323, 2000.
[8]  G. W. Roberts, S. M. Gentleman, A. Lynch, and D. I. Graham, “βA4 amyloid protein deposition in brain after head trauma,” The Lancet, vol. 338, no. 8780, pp. 1422–1423, 1991.
[9]  G. W. Roberts, S. M. Gentleman, A. Lynch, L. Murray, M. Landon, and D. I. Graham, “β amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 57, no. 4, pp. 419–425, 1994.
[10]  M. T. Giordana, A. Attanasio, P. Cavalla, A. Migheli, M. C. Vigliani, and D. Schiffer, “Reactive cell proliferation and microglia following injury to the rat brain,” Neuropathology and Applied Neurobiology, vol. 20, no. 2, pp. 163–174, 1994.
[11]  W. J. Streit, “The role of microglia in brain injury,” NeuroToxicology, vol. 17, no. 3-4, pp. 671–678, 1996.
[12]  S. E. Hickman, E. K. Allison, and J. El Khoury, “Microglial dysfunction and defective β-amyloid clearance pathways in aging alzheimer's disease mice,” The Journal of Neuroscience, vol. 28, no. 33, pp. 8354–8360, 2008.
[13]  S. Mandrekar, Q. Jiang, C. Y. D. Lee, J. Koenigsknecht-Talboo, D. M. Holtzman, and G. E. Landreth, “Microglia mediate the clearance of soluble aβ through fluid phase macropinocytosis,” The Journal of Neuroscience, vol. 29, no. 13, pp. 4252–4262, 2009.
[14]  J. C. M. Schlachetzki and M. Hüll, “Microglial activation in Alzheimer's disease,” Current Alzheimer Research, vol. 6, no. 6, pp. 554–563, 2009.
[15]  S. Engel, H. Schluesener, M. Mittelbronn et al., “Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14,” Acta Neuropathologica, vol. 100, no. 3, pp. 313–322, 2000.
[16]  S. M. Gentleman, P. D. Leclercq, L. Moyes et al., “Long-term intracerebral inflammatory response after traumatic brain injury,” Forensic Science International, vol. 146, no. 2-3, pp. 97–104, 2004.
[17]  T. K. McIntosh, K. E. Saatmann, R. Raghupathi et al., “The Dorothy Russell memorial lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms,” Neuropathology and Applied Neurobiology, vol. 24, no. 4, pp. 251–267, 1998.
[18]  D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005.
[19]  R. Beschorner, T. D. Nguyen, F. G?zalan et al., “CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury,” Acta Neuropathologica, vol. 103, no. 6, pp. 541–549, 2002.
[20]  A. F. Ramlackhansingh, D. J. Brooks, R. J. Greenwood et al., “Inflammation after trauma: microglial activation and traumatic brain injury,” Annals of Neurology, 2011.
[21]  E. Csuka, V. H. J. Hans, E. Ammann, O. Trentz, T. Kossmann, and M. C. Morganti-Kossmann, “Cell activation and inflammatory response following traumatic axonal injury in the rat,” NeuroReport, vol. 11, no. 11, pp. 2587–2590, 2000.
[22]  J. Maeda, M. Higuchi, M. Inaji et al., “Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor,” Brain Research, vol. 1157, no. 1, pp. 100–111, 2007.
[23]  J. Gehrmann, “Microglia: a sensor to threats in the nervous system?” Research in Virology, vol. 147, no. 2-3, pp. 79–88, 1996.
[24]  M. Koshinaga, Y. Katayama, M. Fukushima, H. Oshima, T. Suma, and T. Takahata, “Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices,” Journal of Neurotrauma, vol. 17, no. 3, pp. 183–192, 2000.
[25]  C. Israelsson, H. Bengtsson, A. Kylberg et al., “Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury,” Journal of Neurotrauma, vol. 25, no. 8, pp. 959–974, 2008.
[26]  J. F. Stover, B. Sch?ning, T. F. Beyer, C. Woiciechowsky, and A. W. Unterberg, “Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-α in relation to brain edema and contusion following controlled cortical impact injury in rats,” Neuroscience Letters, vol. 288, no. 1, pp. 25–28, 2000.
[27]  K. T. Lu, Y. W. Wang, J. T. Yang, Y. L. Yang, and H. I. Chen, “Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons,” Journal of Neurotrauma, vol. 22, no. 8, pp. 885–895, 2005.
[28]  E. Pinteaux, L. C. Parker, N. J. Rothwell, and G. N. Luheshi, “Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells,” Journal of Neurochemistry, vol. 83, no. 4, pp. 754–763, 2002.
[29]  N. Rothwell, “Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential,” Brain, Behavior, and Immunity, vol. 17, no. 3, pp. 152–157, 2003.
[30]  E. Csuka, M. C. Morganti-Kossmann, P. M. Lenzlinger, H. Joller, O. Trentz, and T. Kossmann, “IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood-brain barrier function,” Journal of Neuroimmunology, vol. 101, no. 2, pp. 211–221, 1999.
[31]  S. M. Knoblach and A. I. Faden, “Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury,” Experimental Neurology, vol. 153, no. 1, pp. 143–151, 1998.
[32]  S. G. Kremlev and C. Palmer, “Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures,” Journal of Neuroimmunology, vol. 162, no. 1-2, pp. 71–80, 2005.
[33]  Y. Hamada, T. Ikata, S. Katoh et al., “Effects of exogenous transforming growth factor-β1 on spinal cord injury in rats,” Neuroscience Letters, vol. 203, no. 2, pp. 97–100, 1996.
[34]  W. R. Tyor, N. Avgeropoulos, G. Ohlandt, and E. L. Hogan, “Treatment of spinal cord impact injury in the rat with transforming growth factor-β,” Journal of the Neurological Sciences, vol. 200, no. 1-2, pp. 33–41, 2002.
[35]  J. Rogers and L. F. Lue, “Microglial chemotaxis, activation, and phagocytosis of amyloid β-peptide as linked phenomena in Alzheimer's disease,” Neurochemistry International, vol. 39, no. 5-6, pp. 333–340, 2001.
[36]  M. D. Ikonomovic, K. Uryu, E. E. Abrahamson et al., “Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury,” Experimental Neurology, vol. 190, no. 1, pp. 192–203, 2004.
[37]  A. Iwata, X. H. Chen, T. K. McIntosh, K. D. Browne, and D. H. Smith, “Long-term accumulation of amyloid-β in axons following brain trauma without persistent upregulation of amyloid precursor protein genes,” Journal of Neuropathology and Experimental Neurology, vol. 61, no. 12, pp. 1056–1068, 2002.
[38]  K. Uryu, H. Laurer, T. McIntosh, et al., “Repetitive mild brain trauma accelerates Abeta deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis,” The Journal of Neuroscience, vol. 22, pp. 446–454, 2002.
[39]  D. J. Loane, A. Pocivavsek, C. E. H. Moussa et al., “Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury,” Nature Medicine, vol. 15, no. 4, pp. 377–379, 2009.
[40]  R. C. Mannix, J. Zhang, J. Park, et al., “Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 351–361, 2011.
[41]  I. Blasko, R. Beer, M. Bigl et al., “Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease β-secretase (BACE-1),” Journal of Neural Transmission, vol. 111, no. 4, pp. 523–536, 2004.
[42]  X. H. Chen, R. Siman, A. Iwata, D. F. Meaney, J. Q. Trojanowski, and D. H. Smith, “Long-term accumulation of amyloid-β, β-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma,” American Journal of Pathology, vol. 165, no. 2, pp. 357–371, 2004.
[43]  Y. Nadler, A. Alexandrovich, N. Grigoriadis et al., “Increased expression of the γ-secretase components presenilin-1 and nicastrin in activated astrocytes and microglia following traumatic brain injury,” GLIA, vol. 56, no. 5, pp. 552–567, 2008.
[44]  Y. F. Liaoi, B. J. Wang, H. T. Cheng, L. H. Kuo, and M. S. Wolfe, “Tumor necrosis factor-α, interleukin-1β, and interferon-γ stimulate γ-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway,” Journal of Biological Chemistry, vol. 279, no. 47, pp. 49523–49532, 2004.
[45]  W. S. T. Griffin, J. G. Sheng, S. M. Gentleman, D. I. Graham, R. E. Mrak, and G. W. Roberts, “Microglial interleukin-1α expression in human head injury: correlations with neuronal and neuritic P-amyloid precursor protein expression,” Neuroscience Letters, vol. 176, no. 2, pp. 133–136, 1994.
[46]  X. H. Chen, V. E. Johnson, K. Uryu, J. Q. Trojanowski, and D. H. Smith, “A lack of amyloid β plaques despite persistent accumulation of amyloid β in axons of long-term survivors of traumatic brain injury,” Brain Pathology, vol. 19, no. 2, pp. 214–223, 2009.
[47]  R. O. Sanchez Mejia, V. O. Ona, M. Li, and R. M. Friedlander, “Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction,” Neurosurgery, vol. 48, no. 6, pp. 1393–1401, 2001.
[48]  N. Bye, M. D. Habgood, J. K. Callaway et al., “Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration,” Experimental Neurology, vol. 204, no. 1, pp. 220–233, 2007.
[49]  E. Siopi, A. H. Cho, S. Homsi, et al., “Minocycline restores sAPPalpha levels and reduces the late histopathological consequences of traumatic brain injury in mice,” Journal of Neurotrauma, vol. 28, pp. 2135–2143, 2011.
[50]  A. B. Jaffe, C. D. Toran-Allerand, P. Greengard, and S. E. Gandy, “Estrogen regulates metabolism of Alzheimer amyloid β precursor protein,” The Journal of Biological Chemistry, vol. 269, no. 18, pp. 13065–13068, 1994.
[51]  E. Kojro, G. Gimpl, S. Lammich, W. M?rz, and F. Fahrenholz, “Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the α-secretase ADAM 10,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5815–5820, 2001.
[52]  B. S. Kasturi and D. G. Stein, “Progesterone decreases cortical and sub-cortical edema in young and aged ovariectomized rats with brain injury,” Restorative Neurology and Neuroscience, vol. 27, no. 4, pp. 265–275, 2009.
[53]  B. Li, A. Mahmood, D. Lu et al., “Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1B level after traumatic brain injury,” Neurosurgery, vol. 65, no. 1, pp. 179–185, 2009.
[54]  H. Wang, L. Durham, H. Dawson et al., “An apolipoprotein E-based therapeutic improves outcome and reduces Alzheimer's disease pathology following closed head injury: evidence of pharmacogenomic interaction,” Neuroscience, vol. 144, no. 4, pp. 1324–1333, 2007.
[55]  E. E. Abrahamson, M. D. Ikonomovic, C. Edward Dixon, and S. T. DeKosky, “Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels,” Annals of Neurology, vol. 66, no. 3, pp. 407–414, 2009.
[56]  D. J. Loane, P. M. Washington, L. Vardanian et al., “Modulation of ABCA1 by an LXR agonist reduces beta-amyloid levels and improves outcome after traumatic brain injury,” Journal of Neurotrauma, vol. 28, no. 2, pp. 225–236, 2011.
[57]  P. E. Cramer, J. R. Cirrito, D. W. Wesson, et al., “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models,” Science, vol. 335, no. 6075, pp. 1503–1506, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133