The aim of this study is to analyze dual-task effects on free and adaptive gait in Alzheimer's disease (AD) patients. Nineteen elders with AD participated in the study. A veteran neuropsychiatrist established the degree of AD in the sample. To determine dual-task effects on free and adaptive gait, patients performed five trials for each experimental condition: free and adaptive gait with and without a dual-task (regressive countdown). Spatial and temporal parameters were collected through an optoelectronic tridimensional system. The central stride was analyzed in free gait, and the steps immediately before (approaching phase) and during the obstacle crossing were analyzed in adaptive gait. Results indicated that AD patients walked more slowly during adaptive gait and free gait, using conservative strategies when confronted either with an obstacle or a secondary task. Furthermore, patients sought for stability to perform the tasks, particularly for adaptive gait with dual task, who used anticipatory and online adjustments to perform the task. Therefore, the increase of task complexity enhances cognitive load and risk of falls for AD patients. 1. Introduction Elderly people with Alzheimer’s disease (AD) show reduced gait performance [1], such as a slow and irregular stride [2]. Gait adjustments of patients with AD have been explained by frontal lobe dysfunctions, especially in the motor cortex [2, 3], and by an intense decrease in executive functions [3]. Moreover, patients with AD have a less automated gait [1, 4], especially when a concurring executive task (dual task) is performed. Furthermore, elderly people with AD are more prone to falls when compared to healthy elders [5], falling 4 to 5 times a year [6]. Studies have shown that touched or stumbled on the obstacles are one of the major causes for falls in AD patients [7]. The studies of the dual-task effects during gait in AD patients have focused on free gait [8]. However, AD patients do not walk only on even terrain during their daily activities. They need to adapt their locomotor behavior to different travel surfaces. Dual-task effect on adaptive gait (walking characterized by presence of obstacles that demand adaptive strategies) in AD patients is poorly understood [9]. Adaptive gait competes with the executive task for attention and planning functions, especially due to previously observed relationships between performing complex motor tasks and executive functions [3, 10, 11]. Therefore, dual task during adaptive gait seems to be more challenging for AD patients. The aim of this study is to
References
[1]
G. Cocchini, S. Della Sala, R. H. Logie, R. Pagani, L. Sacco, and H. Spinnler, “Dual task effects of walking when talking in Alzheimer's disease,” Revue Neurologique, vol. 160, no. 1, pp. 74–80, 2004.
[2]
S. Della Sala, H. Spinnler, and A. Venneri, “Walking difficulties in patients with Alzheimer's disease might originate from gait apraxia,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 2, pp. 196–201, 2004.
[3]
A. F. Pettersson, E. Olsson, and L. O. Wahlund, “Effect of divided attention on gait in subjects with and without cognitive impairment,” Journal of Geriatric Psychiatry and Neurology, vol. 20, no. 1, pp. 58–62, 2007.
[4]
D. Maquet, F. Lekeu, E. Warzee et al., “Gait analysis in elderly adult patients with mild cognitive impairment and patients with mild Alzheimer's disease: simple versus dual task: a preliminary report,” Clinical Physiology and Functional Imaging, vol. 30, no. 1, pp. 51–56, 2010.
[5]
T. Imamura, N. Hirono, M. Hashimoto et al., “Fall-related injuries in dementia with Lewy bodies (DLB) and Alzheimer's disease,” European Journal of Neurology, vol. 7, no. 1, pp. 77–79, 2000.
[6]
R. Camicioli and L. Licis, “Motor impairment predicts falls in specialized Alzheimer care units,” Alzheimer Disease and Associated Disorders, vol. 18, no. 4, pp. 214–218, 2004.
[7]
P. T. M. van Dijk, O. G. R. M. Meulenberg, H. J. van de Sande, and J. D. F. Habbema, “Falls in dementia patients,” Gerontologist, vol. 33, no. 2, pp. 200–204, 1993.
[8]
K. C. Siu, V. Lugade, L. S. Chou, P. van Donkelaar, and M. H. Woollacott, “Dual-task interference during obstacle clearance in healthy and balance-impaired older adults,” Aging—Clinical and Experimental Research, vol. 20, no. 4, pp. 349–354, 2008.
[9]
P. L. Sheridan, J. Solomont, N. Kowall, and J. M. Hausdorff, “Influence of executive function on locomotor function: divided attention increases gait variability in Alzheimer’s disease,” Journal of the American Geriatrics Society, vol. 51, no. 11, pp. 1633–1637, 2003.
[10]
A. Ble, S. Volpato, G. Zuliani et al., “Executive function correlates with walking speed in older persons: the InCHIANTI study,” Journal of the American Geriatrics Society, vol. 53, no. 3, pp. 410–415, 2005.
[11]
C. C. Persad, J. L. Jones, J. A. Ashton-Miller, N. B. Alexander, and B. Giordani, “Executive function and gait in older adults with cognitive impairment,” Journals of Gerontology A, vol. 63, no. 12, pp. 1350–1355, 2008.
[12]
American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TRed, Amer Psychiatric, 4th edition, 2000.
[13]
C. P. Hughes, L. Berg, W. L. Danziger, et al., “A new clinical scale for the staging of dementia,” British Journal of Psychiatry, vol. 140, no. 6, pp. 566–572, 1982.
[14]
J. L. Cummings, M. Mega, K. Gray, S. Rosenberg-Thompson, D. A. Carusi, and J. Gornbein, “The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia,” Neurology, vol. 44, no. 12, pp. 2308–2314, 1994.
[15]
M. F. Folstein, S. E. Folstein, and P. R. McHugh, “'Mini mental state. A practical method for grading the cognitive state of patients for the clinician,” Journal of Psychiatric Research, vol. 12, no. 3, pp. 189–198, 1975.
[16]
D. R. Royall, J. A. Cordes, and M. Polk, “CLOX: an executive clock drawing task,” Journal of Neurology Neurosurgery and Psychiatry, vol. 64, no. 5, pp. 588–594, 1998.
[17]
B. Dubois, A. Slachevsky, I. Litvan, and B. Pillon, “The FAB: a frontal assessment battery at bedside,” Neurology, vol. 55, no. 11, pp. 1621–1626, 2000.
[18]
A. E. Patla, “Strategies for dynamic stability during adaptive human locomotion,” IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 2, pp. 48–52, 2003.
[19]
A. E. Patla, S. D. Prentice, and L. T. Gobbi, “Visual control of obstacle avoidance during locomotion: strategies in young children, young and older adults,” in Changes in Sensory Motor Behavior in Aging, A. M. Ferrandez and N. Teasdeale, Eds., pp. 257–277, Elsevier, Amsterdam, The Netherlands, 1996.
[20]
J. Krell and A. E. Patla, “The influence of multiple obstacles in the travel path on avoidance strategy,” Gait and Posture, vol. 16, no. 1, pp. 15–19, 2002.
[21]
E. J. Bradshaw and W. A. Sparrow, “Effects of approach velocity and foot-target characteristics on the visual regulation of step length,” Human Movement Science, vol. 20, no. 4-5, pp. 401–426, 2001.
[22]
J. R. Tresilian, “The accuracy of interceptive action in time and space,” Exercise and Sport Sciences Reviews, vol. 32, no. 4, pp. 167–173, 2004.
[23]
M. Gérin-Lajoie, C. L. Richards, and B. J. McFadyen, “The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space,” Motor Control, vol. 9, no. 3, pp. 242–269, 2005.
[24]
R. J. Perry and J. R. Hodges, “Relationship between functional and neuropsychological performance in early Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 14, no. 1, pp. 1–10, 2000.
[25]
G. Allali, M. van der Meulen, and F. Assal, “Gait and cognition: the impact of executive function,” Schweizer Archiv fur Neurologie und Psychiatrie, vol. 161, no. 6, pp. 195–199, 2010.
[26]
F. G. M. Coelho, F. Stella, L. P. de Andrade, et al., “Gait and risk of falls associated with frontal cognitive functions at different stages of Alzheimer's disease,” Aging, Neuropsychology, and Cognition, vol. 18, pp. 1–13, 2012.
[27]
M. Montero-Odasso, J. Wells, M. Borrie, et al., “Can cognitive enhancers reduce the risk of falls in people with dementia? An open-label study with controls,” Journal of the American Geriatrics Society, vol. 57, no. 2, pp. 359–360, 2009.
[28]
J. O. de Lira, K. Z. Ortiz, A. C. Campanha, P. H. Bertolucci, and T. S. Minett, “Microlinguistic aspects of the oral narrative in patients with Alzheimer's disease,” International Psychogeriatrics, vol. 23, no. 3, pp. 404–412, 2011.
[29]
Y. C. Pai and J. Patton, “Center of mass velocity-position predictions for balance control,” Journal of Biomechanics, vol. 30, no. 4, pp. 347–354, 1997.
[30]
A. L. Hof, M. G. Gazendam, and W. E. Sinke, “The condition for dynamic stability,” Journal of Biomechanics, vol. 38, no. 1, pp. 1–8, 2005.
[31]
A. L. Hof, R. M. van Bockel, T. Schoppen, and K. Postema, “Control of lateral balance in walking. Experimental findings in normal subjects and above-knee amputees,” Gait and Posture, vol. 25, no. 2, pp. 250–258, 2007.
[32]
J. M. Hausdorff, G. Yogev, S. Springer, E. S. Simon, and N. Giladi, “Walking is more like catching than tapping: gait in the elderly as a complex cognitive task,” Experimental Brain Research, vol. 164, no. 4, pp. 541–548, 2005.