全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

辅助髁突定位改良型咬合导板的设计与制作
Design and Manufacture of An Improved Guiding Splint for Condylar Positioning.

DOI: 10.13701/j.cnki.kqyxyj.2018.03.006

Keywords: 髁突位置,咬合导板,矢状截骨,计算机辅助设计与制作,下颌骨近心端,
Condyle position
,Guiding splint,Sagittal split,CAD/CAM,Proximal segment

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 目的: 运用计算机辅助设计和制作一种在下颌矢状截骨手术中准确控制髁状突位置的咬合-定位一体化装置,并通过实验验证其准确性。方法: 随机选取在南昌大学附属口腔医院口腔颌面外科就诊,完成术前正畸治疗拟行正颌手术的患者10例,共20侧髁突。行头颅及石膏模型CT扫描,使用Mimics 17.0 软件生成上、下颌三维模型,按手术计划完成虚拟截骨及骨块移动,建立新的上下颌骨空间关系,将髁突的位置信息记录为虚拟组数据。使用Freeform12.0软件设计咬合导板和下颌近心端定位导板,并通过连接杆将咬合导板与定位导板实现一体化。使用3D打印机分别打印一体化定位装置、下颌骨近端骨块、远端骨块等实物模型部件,利用一体化定位装置将实物部件连为一体后行CT扫描,将所得 Dicom 数据作为模型组数据导入到Mimics 17.0 软件中。测量虚拟组和模型组中3个髁突标志点的线性差异及坐标差异,评价髁突位置及空间姿态的变化,统计学分析使用均方根偏差(RMSD)分析。结果: 3固位臂设计对下颌近心端具备良好的固位效果,统计学分析虚拟手术组和模型手术组的髁突位置信息显示了非常好的一致性,最大位置RMSD差异为 0.738 mm,最大姿态角度RSMD差异为1.1°。结论: 计算机辅助设计与制作的咬合-定位一体化导板在体外模型实验中能够对髁状突进行精确定位,且设计、制作简单,有望作为一种正颌手术中髁突定位装置的选择

References

[1]  Shih-Jan, Frank W, Michael, Alexand, Nils-Cla, Majeed. Accuracy of virtual surgical planning of orthognathic surgery with aid of CAD/CAM fabricated surgical splint-a novel 3D analyzing algorithm [J]. J Craniomaxillofac Surg, 2017, 45(12)∶1962-1970
[2]  安娜,郑颖,牛磊,等.正颌外科手术的计算机辅助模拟以及预测的准确性评价[J].口腔医学研究,2014,30(6)∶523-527
[3]  罗雪婷,应彬彬,叶年松,等. 计算机辅助设计结合三维打印手术导板在面部不对称畸形矫治中的应用[J].口腔医学,2016(06)∶519-522
[4]  Xia JJ, Gateno J, Teichgraeber JF, et al. Algorithm for planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) protocol. Part 2: three-dimensional cephalometry, Int J Oral Maxillofac Surg,2015,44(12)∶1441-1450
[5]  Ueki K, Degerliyurt K, Hashiba Y, et al. Horizontal changes in the condylar head after sagittal split ramus osteotomy with bent plate fixation [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 106∶656-661
[6]  Kang MG, Yun KI, Kim CH, et al. Postoperative condylar position by sagittal split ramus osteotomy with and without bone graft [J]. J Oral Maxillofac Surg, 2010, 68∶2058-2064
[7]  Polley JW, Figueroa AA: Orthognathic positioning system: intraoperative system to transfer virtual surgical plan to operating field during orthognathic surgery [J]. J Oral Maxillofac Surg, 2013, 71(9)∶911-920
[8]  Kim HM, Baek SH, Kim TY, et al. Evaluation of three-dimensional position change of the condylar head after orthognathic surgery using computer-aided design/computer-aided manufacturing-made condyle positioning jig [J]. J Craniofac Surg, 2014, 25(6)∶2002-2007
[9]  Kim YK, Yun PY, Ahn JY, et al. Changes in the temporomandibular joint disc position after orthognathic surgery [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009, 108(1)∶15-21
[10]  Ghang MH, Kim HM, You JY, et al. Three-dimensional mandibular change after sagittal split ramus osteotomy with a semirigid sliding plate system for fixation of a mandibular setback surgery [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 115(1)∶157-166
[11]  Ueki K, Marukawa K, Shimada M, et al. Change in condylar long axis and skeletal stability following sagittal split ramus osteotomy and in-traoral vertical ramus osteotomy for mandibular progna-thia [J]. J Oral Maxillofac Surg, 2005, 63∶1494-1499
[12]  Tabrizi R, Shahidi S, Bahramnejad E, et al. Evaluation of Condylar Position after Orthognathic Surgery for Treatment of Class II Vertical Maxillary Excess and Mandibular Deficiency by Using Cone-Beam Computed Tomography [J]. J Dent (Shiraz), 2016, 17(4)∶318-325

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133