|
- 2017
IPTG浓度对大肠杆菌中重组GroEL表达的影响
|
Abstract:
摘要 目的:探究诱导重组GroEL(牙周炎相关动脉粥样硬化疫苗)的最佳IPTG浓度,并分析IPTG浓度影响重组GroEL表达量的原因。方法:构建GroEL的大肠杆菌( Escherichia Coli, E.coli)表达体系,使用不同浓度IPTG(0,10,20,30,50,100 μmol/L)诱导构建的E.coli (GroEL-E.coli),运用SDS-PAGE及相关软件定量分析GroEL表达量;透射电子显微镜及A值测定法分别检测IPTG浓度对GroEL-E.coli内部包涵体(IB)形成及GroEL-E.coli生长的影响。结果:重组GroEL主要以可溶性蛋白的形式存在。IPTG的加入可增加GroEL表达量,当IPTG浓度为30 μmol/L时GroEL表达量最多。IPTG可促进IB形成并抑制GroEL-E.coli生长,且影响效果随IPTG浓度增加而增强。结论:IPTG浓度影响GroEL-E.coli中重组GroEL的表达,最佳IPTG浓度为30 μmol/L;IPTG可通过诱导IB形成及抑制细菌增殖影响GroEL表达量
[1] | Flores S, de Anda-Herrera R, Gosset G, et al. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway [J]. Biotechnol Bioeng, 2004, 87(4)∶485-494 |
[2] | Tomoki M, Naoki T, Koichi T, et al. Chronic oral infection with Porphyromonas gingivalis accelerates atheroma formation by shifting the lipid profile [J]. Plos One, 2011, 6(5)∶414-414 |
[3] | 吕晶露,卞添颖,李丽丽,等.重组人β防御素3对牙龈卟啉单胞菌脂多糖致炎作用的影响[J].口腔医学研究,2015(12)∶1179-1183 |
[4] | Amano A, Chen C, Honma K, et al. Genetic characteristics and pathogenic mechanisms of periodontal pathogens [J]. Advances in Dental Research, 2014, 26(1)∶15-22 |
[5] | Hayer-Hartl M, Bracher A, Hartl FU. The GroEL-GroES Chaperonin Machine: A Nano-Cage for Protein Folding [J]. Trends in Biochemical Sciences, 2015, 41(1)∶62-76 |
[6] | Hagiwara M, Kurita-Ochiai T, Kobayashi R, et al. Sublingual vaccine with GroEL attenuates atherosclerosis [J]. J Dent Res, 2014, 93(4)∶382-387 |
[7] | Rohrbacher F, Wucherpfennig TG, Bode JW. Chemical Protein Synthesis with the KAHA Ligation [J]. Top Curr Chem, 2015, 363(1)∶1-31 |
[8] | Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli [J]. Protein J, 2013, 32(6)∶419-425 |
[9] | Baptiste-Roberts K, Nicholson WK, Wang NY, et al. lac operon induction in Escherichia coli : Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA [J]. Journal of Biotechnology, 2012, 157(1)∶82-88 |
[10] | Goyal M, Chaudhuri TK. GroEL-GroES assisted folding of multiple recombinant proteins simultaneously over-expressed in Escherichia coli [J]. Int J Biochem Cell Biol, 2015, 64(2)∶277-286 |
[11] | Malakar P,Venkatesh KV. Effect of substrate and IPTG concentrations on the burden to growth of Escherichia coli on glycerol due to the expression of Lac proteins [J]. Appl Microbiol Biotechnol, 2012, 93(6)∶2543-2549 |
[12] | Castellanos-Mendoza A, Castro-Acosta RM, Olvera A, et al. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli [J]. Microb Cell Fact, 2014, 13(1)∶137-142 |
[13] | Upadhyay AK, Murmu A, Singh A, et al. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli [J]. PLoS One, 2012, 7(3)∶e33951 |
[14] | Dvorak P, Chrast L, Nikel PI, et al. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway [J]. Microb Cell Fact, 2015, 14(2)∶201-208 |
[15] | Zonneveld-Huijssoon E, Albani S, Prakken BJ, et al. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease [J]. Clin Exp Immunol, 2013, 171(1)∶20-29 |
[16] | Imamura Y, Kurokawa MS, Yoshikawa H, et al. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet's disease [J]. Clin Exp Immunol, 2005, 139(2)∶371-378 |
[17] | Chen X, Liu Y, Yang J, et al. The synthesis of hydroxyapatite with different crystallinities by controlling the concentration of recombinant CEMP1 for biological application [J]. Mater Sci Eng C Mater Biol Appl, 2016, 59(3)∶384-389 |
[18] | Tabeta K, Yamazaki K, Hotokezaka H, et al. Elevated humoral immune response to heat shock protein 60 (hsp60) family in periodontitis patients [J]. Clin Exp Immunol, 2000, 120(2)∶285-293 |
[19] | Z L,HS R. GroEL-mediated protein folding: making the impossible, possible [J]. Critical Reviews in Biochemistry & Molecular Biology, 2006, 41(4)∶211-239 |