|
- 2017
自噬在骨组织疾病中的调控作用研究进展
|
Abstract:
摘要 骨是一种动态活性组织,通过持续的骨重塑维持矿化平衡和自身结构稳定。而自噬是细胞依赖溶酶体进行自体溶解的过程,对骨组织细胞功能具有重要作用,自噬平衡的打破与骨类疾病发生发展密不可分。因此,全面认识自噬对骨组织的调控作用具有重要理论意义和实际应用价值。本文就自噬的形成、自噬与骨组织细胞的作用机制及自噬在骨组织疾病发生发展中的调控机制做一综述,为进一步探讨通过调控自噬治疗骨类疾病提供指导
[1] | Chen K, Yang YH, Jiang SD, et al. Decreased activity of osteocyte autophagy with aging may contribute to the bone loss in senile population [J]. Histochemistry and cell biology, 2014, 142(3)∶285-295 |
[2] | Song C, Song C, Tong F. Autophagy induction is a survival response against oxidative stress in bone marrow–derived mesenchymal stromal cells [J]. Cytotherapy, 2014, 16(10)∶1361-1370 |
[3] | Wong E; Cuervo AM. Integration of clearance mechanisms:the proteasome and autophagy [J]. Cold Spring Harb Perspect Biol, 2010, 2:a006734.DOI:10.1101/cshperspect.a006734 |
[4] | Shaid S, Brandts CH, Serve H, et al. Ubiquitination and selective autophagy [J]. Cell Death & Differentiation, 2013, 20(1)∶21-30 |
[5] | Nollet M, Santucci-Darmanin S, Breuil V, et al. Autophagy in osteoblasts is involved in mineralization and bone homeostasis [J]. Autophagy, 2014, 10(11)∶1965-1977 |
[6] | Zahm AM, Bohensky J, Adams CS, et al. Bone cell autophagy is regulated by environmental factors [J]. Cells Tissues Organs, 2011, 194(2-4)∶274-278 |
[7] | King JS, Veltman DM, Insall RH. The induction of autophagy by mechanical stress [J]. Autophagy, 2011, 7(12)∶1490-1499 |
[8] | Kirkin V, Lamark T, Sou YS, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates [J]. Molecular cell, 2009, 33(4)∶505-516 |
[9] | Goode A, Layfield R. Recent advances in understanding the molecular basis of Paget disease of bone [J]. Journal of clinical pathology, 2010, 63(3)∶199-203 |
[10] | Albagha OME, Visconti MR, Alonso N, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone [J]. Nature genetics, 2010, 42(6)∶520-524 |
[11] | Li D, Wu Z, Duan Y, et al. TNFα-mediated apoptosis in human osteoarthritic chondrocytes sensitized by PI3K-NF-κB inhibitor, not mTOR inhibitor [J]. Rheumatology international, 2012, 32(7)∶2017-2022 |
[12] | Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases [J]. Nature reviews Drug discovery, 2012, 11(9)∶709-730 |
[13] | Motoi Y, Shimada K, Ishiguro K, et al. Lithium and autophagy [J]. ACS chemical neuroscience, 2014, 5(6)∶434-442 |
[14] | Liu F, Fang F, Yuan H, et al. Suppression of autophagy by FIP200 deletion leads to osteopenia in mice through the inhibition of osteoblast terminal differentiation [J]. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research,2013,28(11)∶2414-2430 |
[15] | Yang Y, Zheng X, Li B, et al. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss [J]. Biochemical and biophysical research communications, 2014, 451(1)∶86-92 |
[16] | Chung Y H, Jang Y, Choi B, et al. Beclin-1 Is Required for RANKL‐Induced Osteoclast Differentiation [J]. Journal of cellular physiology, 2014, 229(12)∶1963-1971 |
[17] | DeSelm C J, Miller B C, Zou W, et al. Autophagy proteins regulate the secretory component of osteoclastic bone resorption [J]. Developmental cell, 2011, 21(5)∶966-974 |
[18] | Chung YH, Yoon SY, Choi B, et al. Microtubule-associated protein light chain 3 regulates Cdc42-dependent actin ring formation in osteoclast [J]. The international journal of biochemistry & cell biology, 2012, 44(6)∶989-997 |
[19] | Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis [J]. Nature Reviews Rheumatology, 2011, 7(3)∶161-169 |