|
- 2015
流体剪切力作用下人脂肪基质细胞体外成骨分化的实验研究
|
Abstract:
摘要 目的:分离人体脂肪基质细胞(hADSCs)并研究流体剪切应力对其成骨分化的影响。方法:将脂肪抽吸术获取的人体脂肪进行分离,应用强度为3 dyne/cm2的流体剪切力刺激30 min后观察细胞形态;应用四甲基偶氮唑蓝(MTT)法检测细胞的增殖能力, 绘制细胞生长曲线;碱性磷酸酶(ALP)及茜素红染色对其成骨分化进行鉴定。结果:胶原酶消化后的脂肪基质细胞呈梭形, 经流体剪切力作用培养后,细胞体积明显增大,胞浆丰富并含有较多的细胞器,细胞排列方向与加力方向一致, 呈漩涡状生长,生长速度加快。此外,流体剪切力加载后脂肪基质细胞内碱性磷酸酶活性增高,茜素红染色表明聚集的细胞团中心能形成矿化结节。结论:脂肪基质细胞中的成体干细胞经过流体剪切力作用后可向成骨细胞分化并具有明显的成骨表型,可作为骨组织工程的种子细胞
[1] | Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers [J]. Stem cells,2006,24∶376-85 |
[2] | Zhang Y, Madhu V, Dighe AS, et al. Osteogenic response of human adipose-derived stem cells to BMP-6, VEGF, and combined VEGF plus BMP-6 in vitro [J]. Growth factors,2012,30∶333-43 |
[3] | Delaine-Smith RM, MacNeil S, Reilly GC. Matrix production and collagen structure are enhanced in two types of osteogenic progenitor cells by a simple fluid shear stress stimulus [J]. European cells & materials, 2012, 24∶162-74 |
[4] | Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC [J]. Cell biochemistry and function,2008,26∶664-75 |
[5] | Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue [J]. Stem cells,2006,24∶1294-301 |
[6] | Mirsaidi A, Genelin K, Vetsch JR, et al. Therapeutic potential of adipose-derived stromal cells in age-related osteoporosis [J]. Biomaterials,2014,35∶7326-35 |
[7] | Yang Z, Hao J, Hu ZM. MicroRNA expression profiles in human adipose-derived stem cells during chondrogenic differentiation [J]. International journal of molecular medicine, 2014 |
[8] | Lue J, Lin G, Ning H, et al. Transdifferentiation of adipose-derived stem cells into hepatocytes: a new approach. Liver international: official journal of the International Association for the Study of the Liver,2010,30∶913-22 |
[9] | Govey PM, Loiselle AE, Donahue HJ. Biophysical regulation of stem cell differentiation [J]. Current osteoporosis reports,2013,11∶83-91 |
[10] | Lim KT, Kim J, Seonwoo H, et al. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method [J]. Tissue engineering Part C, Methods, 2013, 19∶128-45 |
[11] | De Ugarte DA, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow [J]. Cells, tissues, organs,2003,174∶101-9 |
[12] | Liu TM, Martina M, Hutmacher DW, et al. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages [J]. Stem cells,2007,25∶750-60 |
[13] | Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells [J]. Molecular biology of the cell,2002,13∶4279-95 |
[14] | Strem BM, Hicok KC, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells [J]. The Keio journal of medicine,2005,54∶132-41 |
[15] | Ying X, Cheng S, Wang W, et al. Effect of lactoferrin on osteogenic differentiation of human adipose stem cells [J]. International orthopaedics,2012,36∶647-53 |
[16] | Chen JC, Jacobs CR. Mechanically induced osteogenic lineage commitment of stem cells [J]. Stem cell research & therapy,2013,4∶107 |
[17] | Stucki U, Schmid J, Hammerle CF, et al. Temporal and local appearance of alkaline phosphatase activity in early stages of guided bone regeneration. A descriptive histochemical study in humans [J]. Clinical oral implants research, 2001, 12∶121-7 |
[18] | Yamaguchi Y, Ohno J, Sato A, et al. Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential [J]. BMC biotechnology, 2014, 14∶105 |