|
- 2018
纳米颗粒共掺杂对玻璃离子水门汀性能影响
|
Abstract:
摘要 目的:评价纳米二氧化钛和纤维素共掺杂对玻璃离子水门汀机械性能及抗菌效果的影响。方法:实验共分3组,2wt%二氧化钛组(T)、2wt%二氧化钛+0.4wt%纳米纤维素的共掺杂组(C)以及未改性水门汀的对照组(CG)。利用万能材料试验机、摩擦磨损试验机分别测试各组材料的抗压性能、摩擦系数和磨损量,菌落计数法评价材料对白色念珠菌的抗菌效果。结果:与未改性组相比,共掺杂组的抗压强度提高了21.8%(P<0.001);磨损量降低为35.9%(P<0.001);抗菌效果提高到92.3%(P<0.001)。扫描电镜可见C组的裂纹显著减少。结论:纳米纤维素和纳米二氧化钛共掺杂显著提高了玻璃离子水门汀的抗压性能、耐磨性以及抗菌效果
[1] | Weng Y, Howard L, Chong VJ, et al. A novel furanone-modified antibacterial dental glass ionomer cement [J]. Acta Biomaterialia, 2012, 8(8)∶3153-3160 |
[2] | Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties [J]. J Dent, 2011, 39(9)∶589-598 |
[3] | Cao S, Wang Y, Cao L, et al. Preparation and antimicrobial assay of ceramic brackets coated with TiO<sub>2</sub> thin films [J]. Korean J Orthod, 2016, 46(3)∶146-154 |
[4] | Gao Lian,Zhang Qinghong. Effects of amorphous contents and particle size on the photocatalytic properties of TiO<sub>2</sub> nanoparticles [J]. Scripta Materialia, 2001, 44(8)∶1195-1198 |
[5] | Kargarzadeh H, Sheltami RM, Ahmad I, et al. Cellulose nanocrystal reinforced liquid natural rubber toughened unsaturated polyester: Effects of filler content and surface treatment on its morphological, thermal, mechanical, and viscoelastic properties [J]. Polymer, 2015, 71(10)∶51-59 |
[6] | Silva RM, Carvalho VX, Dumont VC, et al. Addition of mechanically processed cellulosic fibers to ionomer cement: mechanical properties [J]. Braz Oral Res, 2015, 29,pii:S1806-83242015000100227 |
[7] | 董波,王美玲,谷巍,等.载银纳米二氧化钛对玻璃离子水门汀抑菌性的影响[J].口腔医学研究,2016,32(4)∶335-337 |
[8] | Tang J, Sisler J, Grishkewich N, et al. Functionalization of cellulose nanocrystals for advanced applications [J]. J Colloid Interf Sci, 2017, 494∶397-409 |
[9] | Silva RM, Pereira FV, Mota FA, et al. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals [J]. Mater Sci Eng C Mater Biol Appl, 2016, 58∶389-395 |
[10] | Moshaverinia A, Ansari S, Moshaverinia M, et al. Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC) [J]. Acta Biomaterialia, 2008, 4(2)∶432-440 |
[11] | Smith DC. Development of glass-ionomer cement systems [J]. Biomaterials, 1998, 19(6)∶467-478 |
[12] | De CT, Vercruysse CW, Ladik I, et al. Addition of bioactive glass to glass ionomer cements: Effect on the physico-chemical properties and biocompatibility [J]. Dental Mater, 2017, 33(4)∶186 -203 |
[13] | Frencken JE. The ART approach using glass-ionomers in relation to global oral health care [J]. Dent Mater, 2010, 26(1)∶1-6 |
[14] | Silva RM, Santos PHN, Souza LB, et al. Effects of cellulose fibers on the physical and chemical properties of glass ionomer dental restorative materials [J]. Mater Res Bull, 2013, 48(1)∶118-126 |
[15] | Nakajo K, Imazato S, Takahashi Y, et al. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci [J]. Dental Materials, 2009, 25(6)∶703-708 |
[16] | Markowska-Szczupak A, Ulfig K, Morawski AW. The application of titanium dioxide for deactivation of bioparticulates: An overview [J]. Catal Today, 2011, 169(1)∶249-257 |
[17] | Caballero L, Whitehead KA, Allen NS, et al. Photocatalytic inactivation of Escherichia coli, using doped titanium dioxide under fluorescent irradiation [J]. J Photoch Photobio A, 2014, 276∶50-57 |