|
- 2018
生物力学信号诱导骨髓间充质干细胞分化的现状
|
Abstract:
摘要 骨髓间充质干细胞(bone marrow mesenchymal stem cells,BMSCs)因多向分化潜能,被认为是组织工程种子细胞的重要来源,如何诱导其定向分化一直是组织工程的一大难题。生物力学信号可影响BMSCs分化,但应力加载种类、强度、频率、时间长短不同,BMSCs分化方向及分化程度不同,细胞在受力过程中,细胞-细胞外基质相互作用、细胞骨架、整合素信号通路、离子通道、黏附斑形成等均发生不同程度改建和变化,并影响BMSCs的力学信号传导。本文通过回顾体外加载不同的力学信号诱导BMSCs定向分化方式和途径、力学作用对BMSCs细胞骨架相关力学信号的转导以及相关特定蛋白基因表达的影响,对生物力学信号影响BMSCs分化的研究现状和未来趋势进行综述
[1] | Shu W, Liu L, Bao G, et al. Tissue engineering of the temporomandibular joint disc: current status and future trends [J]. International Journal of Artificial Organs, 2015, 38(2)∶55 |
[2] | 苏雪莲,包广洁,康宏.碱性成纤维细胞生长因子对骨髓间充质干细胞向颞下颌关节盘细胞分化的影响[J].生物医学工程学杂志, 2012(4)∶142-146 |
[3] | Bian L, Zhai D Y, Zhang E C, et al. Dynamic Compressive Loading Enhances Cartilage Matrix Synthesis and Distribution and Suppresses Hypertrophy in hMSC-Laden Hyaluronic Acid Hydrogels [J]. Tissue Engineering Part A, 2011, 18(7-8)∶715-724 |
[4] | Kang M N, Yoon H H, Seo Y K, et al. Effect of Mechanical Stimulation on the Differentiation of Cord Stem Cells [J]. Connective Tissue Research, 2012, 53(2)∶149-159 |
[5] | Meyer E G, Buckley C T, Steward A J, et al. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells [J]. Journal of the mechanical behavior of biomedical materials, 2011, 4(7)∶1257-1265 |
[6] | Zhang Y, An H S, Tannoury C, et al. Biological treatment for degenerative disc disease: implications for the field of physical medicine and rehabilitation [J]. American Journal of Physical Medicine & Rehabilitation, 2008, 87(9)∶694-702 |
[7] | Freimark D, Czermak P. Cell-based regeneration of intervertebral disc defects: Review and concepts [J]. International Journal of Artificial Organs, 2009, 32(4)∶197-203 |
[8] | 苏雪莲,包广洁,康宏,等.山羊骨髓间充质干细胞向纤维软骨分化的形态学改变[J].中国组织工程研究, 2014, 18(6)∶860-865 |
[9] | Storm C, Pastore J J, Mackintosh F C, et al. Nonlinear elasticity in biological gels [J]. Nature, 2004, 435(7039)∶191-194 |
[10] | Herant, Marc, Marganski, et al. The mechanics of neutrophils: synthetic modeling of three experiments [J]. Biophysical Journal, 2003, 84(5)∶3389-3413 |
[11] | Michalopoulos E, Knight R L, Korossis S, et al. Development of Methods for Studying the Differentiation of Human Mesenchymal Stem Cells Under Cyclic Compressive Strain [J]. Tissue Engineering Part C Methods, 2011, 18(4)∶252-262 |
[12] | Leong W S, Wu S C, Pal M, et al. Cyclic tensile loading regulates human mesenchymal stem cell differentiation into neuron-like phenotype [J]. Journal of Tissue Engineering & Regenerative Medicine, 2012, 6(S3)∶s68-s79 |
[13] | Huang C H, Chen M H, Young T H, et al. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells [J]. Journal of Cellular Biochemistry, 2009, 108(6)∶1263-1273 |
[14] | Sumanasinghe R D, Pfeiler T W, Monteiro-Riviere N A, et al. Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain [J]. Journal of Cellular Physiology, 2009, 219(1)∶77-83 |
[15] | Byrne E M, Farrell E, Mcmahon L A, et al. Gene expression by marrow stromal cells in a porous collagen-glycosaminoglycan scaffold is affected by pore size and mechanical stimulation [J]. Journal of Materials Science: Materials in Medicine, 2008, 19(11)∶3455-3463 |
[16] | Hanson A D, Marvel S W, Bernacki S H, et al. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities [J]. Annals of Biomedical Engineering, 2009, 37(5)∶955-965 |
[17] | Rui Y F, Lui P P, Ni M, et al. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells [J]. Journal of Orthopaedic Research, 2011, 29(3)∶390-396 |
[18] | Arnsdorf E J, Tummala P, Kwon R Y, et al. Mechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics [J]. Journal of Cell Science, 2009, 122(4)∶546-553 |
[19] | 姜喜亮,朱晓文,胡静,等.整合素信号通路在大鼠骨髓间充质干细胞牵张中的作用和转导机制[J].中国口腔颌面外科杂志,2015,13(3)∶193-199 |
[20] | Mai Z, Peng Z, Wu S, et al. Single bout short duration fluid shear stress induces osteogenic differentiation of MC3T3-E1 cells via integrin β1 and BMP2 signaling cross-talk [J]. Plos One, 2012, 8(4)∶751-758 |
[21] | Yan Y X, Gong Y W, Guo Y, et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation [J]. Plos One, 2012, 7(4)∶e35709-e35709 |
[22] | Lim C T, Zhou E H, Quek S T. Mechanical models for living cells--a review [J]. Journal of Biomechanics, 2006, 39(2)∶195-216 |
[23] | Pelaez D, Huang C Y, Cheung H S. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds [J]. Stem Cells & Development, 2008, 18(1)∶93-102 |
[24] | Kupcsik L, Stoddart M J, Li Z, et al. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering [J]. Tissue Engineering Part A, 2010, 16(6)∶1845-1855 |
[25] | Li Z, Kupcsik L, Yao SJ, et al. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway [J]. Journal of Cellular & Molecular Medicine, 2010, 14(6a)∶1338-1346 |