|
- 2018
纳米纤维支架在骨组织工程中的应用
|
Abstract:
摘要 纳米纤维支架是具有纳米级别的天然骨分级结构和多孔结构,近年来在骨组织工程中得到广泛应用。骨组织工程由种子细胞、支架和生长因子3个部分组成,其中寻找能够促进细胞长入和引导新骨生长的三维组织工程支架是骨组织工程研究的重点。纳米纤维支架与天然骨细胞外基质形态结构相似,能够促进细胞附着和干细胞分化,所以成为目前促进骨组织再生的理想支架。本文综述了纳米纤维支架制备技术的最新研究进展
[1] | Harvey EJ, Henderson JE, Vengallatore ST. Nanotechnology and bone healing [J]. J Orthop Trauma, 2010, 24, 1(3)∶25-30 |
[2] | Mcclellan P, Landis WJ. Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering [J]. Biores Open Access, 2016, 5(1)∶212-227 |
[3] | Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds [J]. Biomaterials, 2006, 27(21)∶3973-3979 |
[4] | Wang Z, Dong L, Han L, et al. Self-assembled biodegradable nanoparticles and polysaccharides as biomimetic ECM nanostructures for the synergistic effect of RGD and BMP-2 on bone formation [J]. Sci Rep, 2016, 6∶25090 |
[5] | Igwe JC, Mikael PE, Nukavarapu SP. Design, fabrication and <i>in vitro</i>, evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering [J]. J Tissue Eng Regen Med, 2014, 8(2)∶131-142 |
[6] | Lee YJ, An SJ, Bae EB, et al. The effect of thickness of resorbable bacterial cellulose membrane on guided bone regeneration [J]. Materials (Basel), 2017, 10(3) ,pii: E320 |
[7] | Grande CJ, Torres FG, Gomez CM, et al. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications [J]. Acta Biomater, 2009, 5(5)∶1605-1615 |
[8] | Guo J, Liu X, Lee MA, et al. Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation [J]. J Biomed Mater Res A, 2016, 105(1)∶226-235 |
[9] | 张震, 李莹, 耿亚伟,等. 纳米支架及合成技术在神经组织再生的应用[J].口腔医学研究,2017,33(4)∶459-462 |
[10] | 何彬, 袁霄, 张华,等. 自组装肽纳米纤维支架用于骨修复的研究进展[J].中国修复重建外科杂志,2014,28(10)∶1303-1306 |
[11] | He B, Ou Y, Zhou A, et al. Functionalizedd-form self-assembling peptide hydrogels for bone regeneration [J]. Drug Des Devel Ther, 2016, 10(1)∶1379-1388 |
[12] | Helenius G, B?ckdahl H, Bodin A, et al. <i>In vivo</i> biocompatibility of bacterial cellulose [J]. J Biomed Mater Res A, 2006, 76A(2)∶431-438 |
[13] | Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges [J]. Crit Rev Biomed Eng, 2012, 40(5)∶363-408 |
[14] | Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix [J]. J Biomed Mater Res, 1999, 46(1)∶60-72 |
[15] | 刘瑞来, 陈良壁, 唐春怡. 三维纳米纤维组织工程支架的研究进展[J].德州学院学报, 2014, 30(4)∶57-62 |
[16] | Akbarzadeh R, Yousefi AM. Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering [J]. J Biomed Mater Res B Appl Biomater, 2014, 102(6)∶1304-1315 |
[17] | Zhijiang C, Chengwei H, Guang Y. Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application [J]. J Polym Res, 2011, 18(4)∶739-744 |
[18] | Briggs T, Arinzeh TL. Examining the formulation of emulsion electrospinning for improving the release of bioactive proteins from electrospun fibers [J]. J Biomed Mater Res A, 2014, 102(3)∶674-684 |
[19] | Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres [J]. J Biomed Mater Res A, 2006, 78A(2)∶306-315 |
[20] | Lee SH, Lim YM, Jeong SI, et al. The effect of bacterial cellulose membrane compared with collagen membrane on guided bone regeneration [J]. J Adv Prosthodont, 2015, 7(6)∶484-495 |
[21] | Asli MM, Pourdeyhimi B, Loboa EG. Release profiles of tricalcium phosphate nanoparticles from poly(L-lactic acid) electrospun scaffolds with single component, core-sheath, or porous fiber morphologies: effects on hASC viability and osteogenic differentiation [J]. Macromol Biosci, 2012, 12(7)∶893-900 |
[22] | Chen R, Huang C, Ke Q, et al. Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications [J]. Colloids Surf B Biointerfaces, 2010, 79(2)∶315-325 |
[23] | Saska S, Barud HS, Gaspar AM, et al. Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration [J]. Int J Biomater,2011, 2011∶1-8 |
[24] | Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering [J]. Biomaterials, 2011, 32(36)∶9622-9629 |
[25] | Yang X, Chen X, Wang H. Acceleration of osteogenic differentiation of preosteoblastic cells by chitosan containing nanofibrous scaffolds [J]. Biomacromolecules, 2009, 10(10)∶2772-2778 |