全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

MicroRNAs与肿瘤血管生成
MicroRNAs and Tumor Angiogenesis.

DOI: 10.13701/j.cnki.kqyxyj.2017.08.025

Keywords: 微小RNA,血管生成,肿瘤,
MicroRNAs
, Angiogenesis ,Tumor

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 血管生成是指在现有血管基础上生成新血管结构的过程,与肿瘤发生发展密切相关。新生的血管既为肿瘤生长提供营养支持,又参与肿瘤转移、复发、耐药等诸多生物学行为。MicroRNAs作为重要的调节方式,在肿瘤血管生成中扮演的的角色尤为突出。本文就microRNAs在不同肿瘤中参与血管生成的相关机制作一综述

References

[1]  Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression [J]. Nat Rev Cancer, 2012, 12(9)∶613-626
[2]  Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature, 2011, 473(7347)∶298-307
[3]  Li LQ, Li H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors [J]. Cancer Biol Ther, 2013, 14(9)∶796-805
[4]  Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity [J]. Dev cell, 2008, 15(2)∶272-284
[5]  Chen H, Li L, Wang S, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A [J]. Oncotarget, 2014, 5(23)∶11873-11885
[6]  Koelz M, Lense J, Wrba F, et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors [J]. Int J Oncol, 2011, 38(2)∶503-511
[7]  Jiang H, Wang P, Wang Q, et al.Quantitatively controlling expression of miR-17~92 determines colon tumor progression in a mouse tumor model [J]. Am J Pathol, 2014, 184(5)∶1355-1368
[8]  Engelmann D, Mayoli-Nussle D, Mayrhofer C, et al. E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B [J]. J Mol Cell Biol, 2013, 5(6)∶391-403
[9]  Skrzypek K, Tertil M, Golda S, et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis [J]. Antioxid Redox Signal, 2013, 19(7)∶644-660
[10]  Chen LT, Xu SD, Xu H,et al.MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis [J]. Med Oncol, 2012, 29(3)∶1673-1680
[11]  Dang LT, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development [J]. Arterioscler Thromb Vasc Biol, 2013, 33(2)∶193-200
[12]  Kuninty PR, Schnittert J, Storm G, et al. MicroRNA targeting to modulate tumor microenvironment [J]. Front Oncol, 2016, 6∶3
[13]  Jusufovic E, Rijavec M, Keser D, et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non--small--cell lung cancer [J]. PLoS One, 2012, 7(9)∶e45577
[14]  Nichol D, Stuhlmann H. EGFL7: a unique angiogenic signaling factor in vascular development and disease [J]. Blood, 2012, 119(6)∶1345-1352
[15]  Sun CY, She XM, Qin Y, et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF [J]. Carcinogenesis, 2013, 34(2)∶426-435
[16]  Pecot CV, Rupaimoole R, Yang D, et al. Tumour angiogenesis regulation by the miR-200 family [J]. Nat Commun, 2013, 4∶2427
[17]  Yang F, Wang W, Zhou C, et al. MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2 [J]. Tumour Biol, 2015, 36(5)∶3763-3773
[18]  Santhekadur PK, Das SK, Gredler R, et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor kappaB and miR-221 [J]. J Biol Chem, 2012, 287(17)∶13952-13958
[19]  Chan JK, Kiet TK, Blansit K, et al. MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer [J]. Gynecol Oncol, 2014, 133(3)∶568-574
[20]  Merritt WM, Lin YG, Spannuth WA, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth [J]. J Natl Cancer Inst, 2008, 100(5)∶359-372
[21]  Chan YC, Khanna S, Roy S, et al. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells [J]. J Biol Chem, 2011, 286(3)∶2047-2056
[22]  Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis [J]. Cell, 2011, 146(6)∶873-887
[23]  Elmasri H, Ghelfi E, Yu CW, et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway [J]. Angiogenesis, 2012, 15(3)∶457-468
[24]  Dejean E, Renalier MH, Foisseau M, et al. Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas [J]. Leukemia, 2011, 25(12)∶1882-1890
[25]  Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster [J]. Nat Genet, 2006, 38(9)∶1060-1065
[26]  Kong D, Li Y, Wang Z, et al. The miR-200 regulates PDGF-D mediated epithelial-mesenchymal transition, adhesion and invasion of prostate cancer cells [J]. Stem Cells, 2009, 27(8)∶1712-1721
[27]  Liu H, Brannon AR, Reddy AR, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma [J]. BMC Syst Biol, 2010, 4∶51
[28]  Roybal JD, Zang Y, Ahn YH, et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1 [J]. Mol Cancer Res, 2011, 9(1)∶25-35
[29]  Dai L, Wang W, Zhang S, et al. Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo [J]. Cell Biol Int, 2012, 36(8)∶765-770
[30]  Zhang Y, Wang X, Xu B, et al. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer [J]. Oncol Rep, 2013, 30(4)∶1976-1984
[31]  Nicoli S, Knyphausen CP, Zhu LJ, et al. miR-221 is required for endothelial tip cell behaviors during vascular development [J]. Dev Cell, 2012, 22(2)∶418-429
[32]  Yang TQ, Lu XJ, Wu TF, et al. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway [J]. Cancer Sci, 2014, 105(3)∶265-271
[33]  Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 [J]. Arterioscler Thromb Vasc Biol, 2011, 31(11)∶2595-2606
[34]  Musumeci M, Coppola V, Addario A, et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer [J]. Oncogene, 2011, 30(41)∶4231-4242
[35]  Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5)∶646-674
[36]  Landskroner-Eiger S, Moneke I, Sessa WC. MiRNAs as modulators of angiogenesis [J]. Cold Spring Harb Perspect Med, 2013, 3(2)∶a006643
[37]  Song ZF, Li GH. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury [J]. J Cardiovasc Transl Res, 2010, 3(3)∶246-250
[38]  Chou J, Payam S, Zena W. MicroRNA-mediated regulation of the tumor microenvironment [J]. Cell Cycle, 2013, 12(20)∶3262-3271
[39]  Wang S, Aurora AB, Johnson BA, et al. An Endothelial-specific microRNA Governs Vascular Integrity and Angiogenesis [J]. Dev cell, 2008, 15(2)∶261-271
[40]  Du C, Lv Z, Cao L, et al. MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2 [J]. J Transl Med, 2014, 12∶259
[41]  Zhu N, Zhang D, Xie H, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2 [J]. Mol Cell Biochem, 2011, 351(1-2)∶157-164
[42]  Sasahira T, Kurihara M, Bhawal UK, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer [J]. Br J Cancer, 2012, 107(4)∶700-706

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133