全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一类非线性椭圆方程的刘维尔型定理
LIOUVILLE TYPE THEOREMS FOR A NONLINEAR ELLIPTIC EQUATION

Keywords: 梯度估计 非线性椭圆方程 刘维尔型定理 极大值原理
gradient estimate nonlinear elliptic equation Liouville-type theorem maximum principle

Full-Text   Cite this paper   Add to My Lib

Abstract:

设(Mn,g)是一个n维非紧的完备黎曼流行.本文考虑有正解的非线性椭圆方程△fu+au log u=0的刘维尔型定理,其中a是一个非零常数.利用Bochner公式和极大值原理,获得了以上方程在Bakry-Emery里奇曲率有下界时正解的Li-Yau型梯度估计和某些有关的刘维尔理论,推广了文献[7]的结果.
Let (Mn, g) be an n-dimensional complete noncompact Riemannian manifold. In this paper, we consider the Liouville type theorems for positive solutions to the following nonlinear elliptic equation:△fu + au log u=0, where a is a nonzero constant. By applying Bochner formula and the maximum principle, we obtain local gradient estimates of the Li-Yau type for positive solutions of the above equation on Riemannian manifolds with Bakry-Emery Ricci curvature bounded from below and some relevant Liouville type theorems, which improve some results of[7]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133