Twenty-one yellow-fleshed cassava genotypes were evaluated over two years in five major cassava growing agroecological zones in Nigeria. The trials were established in a randomized complete block design with four replications to assess genotype performance and Genotype × Environment interaction for cassava mosaic disease (CMD), fresh and dry root yield (FYLD; DYLD), root dry matter content (DMC), and total carotene concentration (TCC). Combined analysis of variance showed significant differences ( ) among genotypes (G), environment (E), and Genotype × Environment interaction (GE) for all the traits tested. For reaction to CMD, the best genotypes showing stable resistance were TMS 07/0539 and TMS 07/0628. For root yield, the best genotypes were TMS 01/1368 and TMS 07/0553. Genotype TMS 07/0593 was the best for DMC and TCC across the 10 environments. Variation among genotypes accounted for most of the Total Sum of Squares for CMD (72.1%) and TCC (34.4%). Environmental variation accounted for most of the Total Sum of Squares for FYLD (42.8%), DYLD (39.6%), and DMC (29.2%). This study revealed that TMS 07/0593 has the highest and most stable TCC, DMC with the lowest CMD severity score and appeared to be the best genotype. 1. Introduction Vitamin A deficiency (VAD) is a global problem of public health significance in under-privileged communities of the world [1]. Xerophthalmia is the most readily recognized and the most widely employed criterion for discussing whether VAD poses a significant public health problem in any particular community [2]. Vitamin A deficiency in the early stage leads to night blindness and Xerophthalmia, which may ultimately progress to blindness [3]. A nationwide food consumption and nutrition survey conducted in Nigeria revealed that 29.5% of children under 5 years of age were vitamin A deficient (serum retinol <0.70? mol/L) [4]. Cassava (Manihot esculenta Crantz) is an important food security crop and a major source of calories for about two of every five Africans [5]. Although the starchy root is the primary product, fresh leaves are also used for animal and/or human consumption [6]. In 2008, Nigeria was the leading cassava producing country in sub-Saharan Africa, producing 44.6 million tons on 3.8 million ha [7]. In Nigeria, more than 70% of cassava production is processed at the village level into gari, the principal source of calories for 70–80 million Nigerians. Cassava varieties often demonstrate specific adaptation due to their high sensitivity to the genotype-by-environment interaction (G E) that occurs in both short-term
References
[1]
World Health Organization, Global Prevalence of Vitamin A Deficiency, WHO/NUT/95.3, Geneva, Switzerland, 1995.
[2]
World Health Organization, “Control of Vitamin A deficiency and xerophthalmia,” Tech. Rep. 672, Geneva, Switzerland, 1982.
[3]
H. E. Cuevas, H. Song, J. E. Staub, and P. W. Simon, “Inheritance of beta-carotene-associated flesh color in cucumber (Cucumis sativus L.) fruit,” Euphytica, vol. 171, no. 3, pp. 301–311, 2010.
[4]
B. B. Maziya-Dixon, I. O. Akinyele, R. A. Sanusi, T. E. Oguntona, S. K. Nokoe, and E. W. Harris, “Vitamin A deficiency is prevalent in children less than 5 y of age in Nigeria,” Journal of Nutrition, vol. 136, no. 8, pp. 2255–2261, 2006.
[5]
F. Nweke, D. S. C. Spencer, and J. K. Lynam, The Cassava Transformation, Africa’s best kept secret, Michigan State University Press, East Lansing, Mich, USA, 2002, Shaffi B., Mahler K. A., Price W. J., Auld D. L.
[6]
H. Ceballos, T. Sánchez, A. L. Chávez et al., “Variation in crude protein content in cassava (Manihot esculenta Crantz) roots,” Journal of Food Composition and Analysis, vol. 19, no. 6-7, pp. 589–593, 2006.
[7]
FAO, Cassava Production Outlook, FAO, Rome, Italy, 2011.
[8]
S. A. Eberhart and W. A. Russel, “Stability parameters for comparing varieties,” Crop Science, vol. 6, pp. 36–40, 1966.
[9]
M. S. Kang and R. Magari, “New developments in selecting for phenotypic stability in crop breeding,” in Genotype-by-Environment Interaction, M. S. Kang and H. G. Zobel Jr., Eds., pp. 51–84, CRC Press, Boca Raton, Fla, USA, 1996.
[10]
D. B. Rodriguez-Amaya, “Nature and distribution of carotenoids in foods,” in Shelf-Life Studies of Foods and Beverages. Chemical, Biological, Physical and Nutritional Aspects, G. Charalambous, Ed., pp. 547–589, Elsevier Science Publishers, Amsterdam, The Netherlands, 1993.
[11]
D. B. Rodriguez-Amaya and M. Kimura, A Guide to Carotenoid Analysis in Foods, OMRI Research, International Life Sciences Institute (ILSI), Washington, DC, USA, 2001.
[12]
S. R. A. Adewusi and J. H. Bradbury, “Carotenoids in cassava: comparison of open-column and HPLC methods of analysis,” Journal of the Science of Food and Agriculture, vol. 62, no. 4, pp. 375–383, 1993.
[13]
N. Nassar, C. S. Vizzotto, C. A. Schwartz, and O. R. Pires, “Cassava diversity in Brazil: the case of carotenoid-rich landraces,” Journal Genetics and Molecular Research, vol. 6, no. 1, pp. 116–121, 2007.
[14]
N. I. Krinsky, “The biological properties of carotenoids,” Pure and Applied Chemistry, vol. 66, pp. 1003–1010, 1994.
[15]
J. H. Bradbury and W. D. Holloway, Chemistry of Tropical Root Crops. Significance for Nutrition and Agriculture in the Pacific, Australian Centre for International Agricultural Research (ACIAR), Canberra, Australia, 1988.
[16]
I. McDowell and K. A. Oduro, “Investigation of a-carotene content of yellow varieties of cassava (Manihot esculenta Crantz),” Journal of Plant Foods, vol. 5, pp. 169–171, 1983.
[17]
A. L. Chávez, T. Sánchez, H. Ceballos et al., “Retention of carotenoids in cassava roots submitted to different processing methods,” Journal of the Science of Food and Agriculture, vol. 87, no. 3, pp. 388–393, 2007.
[18]
IITA, Cassava in Tropical Africa: A Reference Manual, International Institute of Tropical Agriculture, Ibadan, Nigeria, 1990.
[19]
D. B. Rodriguez-Amaya and M. Kimura, HarvestPlus Handbook for Carotenoid Analysis, vol. 2 of HarvestPlus Technical Monograph, 2004.
[20]
H. G. Gauch and R. W. Zobel, “AMMI analysis of yield trials,” in Genotype by Environment Interaction, M. S. Kang and H. G. Gauch Jr., Eds., CRS Press, International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), New York, NY, USA, 1996.
[21]
W. Yan and M. S. Kang, GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists, CRC Press, Boca Raton, Fla, USA, 2003.
[22]
W. Yan and N. A. Tinker, “Biplot analysis of multi-environment trial data: principles and applications,” Canadian Journal of Plant Science, vol. 86, no. 3, pp. 623–645, 2006.
[23]
W. Yan, L. A. Hunt, Q. Sheng, and Z. Szlavnics, “Cultivar evaluation and mega-environment investigation based on the GGE biplot,” Crop Science, vol. 40, no. 3, pp. 597–605, 2000.
[24]
S. Gorrettie and D. Alfred, “Genotype × environment interaction, stability and agronomic performance of carotenoid-rich cassava clones,” Scientific Research and Essays, vol. 2, no. 9, pp. 390–399, 2007.
[25]
R. E. C. Mba and A. G. O. Dixon, “Genotype × environment interaction, phenotypic stability of cassava yields and heritability estimates for production and pests resistance traits in Nigeria,” in Root Crops and Poverty Alleviation: Proceedings of the Sixth Triennial Symposium of the International Society for Tropical Root Crops—Africa Branch Held from 22 to 28 October 1995 in Lilongwe, Malawi, M. O. Akoroda and I. J. Ekanayake, Eds., pp. 255–261, 1998.
[26]
C. N. Egesi, P. Ilona, F. O. Ogbe, M. Akoroda, and A. Dixon, “Genetic variation and genotype × environment interaction for yield and other agronomic traits in cassava in Nigeria,” Agronomy Journal, vol. 99, no. 4, pp. 1137–1142, 2007.
[27]
N. G. Maroya and A. G. O. Dixon, “Utilisation des paramètres de stabilité dans la sélection des clones de manioc pour le rendement en racine,” in Root Crops For Food Security in Africa: Proceedings of the 5th Symposium of ISTRC-AB Held in Kampala, Uganda 22–28 November 1992, M. O. Akoroda, Ed., pp. 111–115, 1994.
[28]
IITA (International Institute of Tropical Agriculture), Annual Report of Root, Tuber and Plantain Improvement Program, IITA, Ibadan, Nigeria, 1987.
[29]
N. G. Maroya, Genotype by environment interaction effect on beta carotene and some yield components of yellow root cassava (Manihot esculenta crantz) genotypes in Ghana [Ph.D. thesis], University of Ghana, Ghana, Legon, 2008.
[30]
G. Ssemakula, A. G. O. Dixon, and B. Maziya-Dixon, “Stability of total carotenoid concentration and fresh yield of selected yellow-fleshed cassava (Manihot esculenta Crantz),” Journal of Tropical Agriculture, vol. 45, no. 1-2, pp. 14–20, 2007.