全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

厄兰极值混合模型的有效估计及其在保险中的应用
EFFICIENT ESTIMATION OF ERLANG AND GPD MIXTURES USING ISCAD PENALTY WITH INSURANCE APPLICATION

Keywords: 极值理论 极值混合模型 iSCAD惩罚 EM算法 似然函数
extreme value theory mixture model iSCAD penalty EM algorithm likelihood function

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文研究了Erlang混合分布和广义帕累托分布混合模型的估计问题.通过引入iSCAD惩罚函数,利用EM算法极大化iSCAD惩罚似然函数的方法,获得了混合序和参数的估计值,计算出有效的度量风险指标value-at-risk(VaR)和tail-VaR(TVaR),通过模拟实验和实际数据说明了模型和算法的有效性.推广了有限Erlang极值混合模型在保险数据拟合中的应用.
In this paper, we study efficient estimation of Erlang & GPD mixture model. By using a new thresholding penalty function and a corresponding EM algorithm, we estimate model parameters and determine the order of the mixture model. We obtain risk measure including VaR and TVaR and show efficiency of the new mixture model in simulation studies and a real data application, which improve Erlang & extreme value mixture model in modeling insurance losses

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133