|
- 2016
de Sitter空间S1m+1中具有平行Blaschke张量的正则类空超曲面
|
Abstract:
本文引入两个以de Sitter空间为模型的非齐性坐标来覆盖共形空间Q1m+1.利用球面Sm+1中超曲面的M?bius几何的方法,本文研究了Q1m+1中正则类空超曲面的共形几何.作为其结果,本文对所有具有平行Blaschke张量的正则类空超曲面进行了完全分类.
In this paper, we introduce two conformal non-homogeneous coordinate systems. Modeled on the de Sitter space S1m+1, we cover the conformal space Q1m+1. The conformal geometry of regular space-like hypersurfaces in Q1m+1 can be treated as in the M?bius geometry of hypersurfaces in the sphere Sm+1. As a result, we give a complete classiflcation of the regular space-like hypersurfaces with parallel Blaschke tensors