全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

地下水参数反演的确定性集合卡尔曼滤波方法 A deterministic ensemble Kalman filter method for inversing hydrogeological parameters

Keywords: 地下水,数据同化,卡尔曼滤波,抽样

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于地下水流动的发生环境通常非常复杂,通过稀少的钻孔资料难以对含水层特征进行准确的描述,而数据同化技术可以利用地下水位等动态数据反演出含水层的特征.为减小大尺度问题的抽样误差,提出了以确定性抽样技术为基础的卡尔曼滤波方法,讨论了确定性卡尔曼滤波方法在强烈非均匀介质和大尺度问题中的应用效果.研究结果表明:确定性卡尔曼滤波方法生成了唯一的样本集合,避免了传统集合卡尔曼滤波方法预测结果的不确定性;该方法能够缓解小样本条件下的系统方差快速衰减现象,并在强烈非均质介质中表现出良好的计算性能;结合局部化技术,确定性集合卡尔曼滤波方法能够很好地解决大尺度地下水系统的参数反演问题

References

[1]  Geir N,Johnsen L M,Aanonsen S I,Vefring E H.Reservoir monitoring and continuous model updating using ensemble Kalman filter[J].SPE Journal,2003,10(1):66-74.
[2]  Anderson J L.An adaptive covariance inflation error correction algorithm for ensemble filters[J].Tellus A,2007,59(2):210-224.
[3]  史良胜,廖卫红,杨金忠,等.地下水流动的条件模拟[J].四川大学学报(工程科学版),2009,(6):452-465.Shi Liangsheng,Liao Weihong,Yang Jinzhong.The conditional simulation of groundwater flow[J].Journal of Sichuan University(Engineering Science Edition),2009,(6):452-465.
[4]  Wen X H,Chen W H.Practical issues on real-time reservoir updating using ensemble Kalman filter[J].SPEJ,2007,12(2):156-166.
[5]  Verlaan M,Heemink A W.Nonlinearity in data assimilation applications:apractical method for analysis[J].Month Weather Rev.,2001,129:1578-1589.
[6]  Furrer R,Bengtsson T.Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter wariants[J].J.Multivariate Analysis,2007,98:227-255.
[7]  Evensen G.Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods in forecast error studies[J].J.Geophys.Res.,1994,99(C5):10143-10162.
[8]  Ghanem R,Spanos P.Stochastic Finite Elements:A Spectral Approach[M].New York:Springer-Verlag,1991.
[9]  Xiu D,Hesthaven J S.High-order collocation methods for differential equations with random inputs[J].SIAM Journal of Scientific Computing,2005,27(3):1118-1139.
[10]  Wang X,Hamill T M,Whitaker J S,Bishop C H.a comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes[J].Mon.Weather Rev.,2007,135:1055-1076.
[11]  Franssen H J H,Gómez-Hernández J,Sahuquillo A.Coupled inverse modeling of groundwater flow and mass transport and the worth of concentration data[J].Journal of Hydrology,2003,281(4):281-295.
[12]  史良胜,杨金忠,蔡树英.基于降雨空间变异的潜水运动随机模拟方法Ⅱ——条件模拟[J].水利学报,2007,38(5):524-528.Shi Liangsheng,Yang Jinzhong,Cai Shuying.Stochastic simulation of groundwater flow subject to spatial variable precipitation II——Conditional simulation[J].Journal of Hydraulic Engineering,2007,38(5):524-528.
[13]  Evensen G.The ensemble Kalman filter:theoretical formulation and practical implementation[J].Ocean Dynam.,2003,53:343-367.
[14]  Xiu D.Efficient collocational approach for parametric uncertainty analysis[J].Communications in Computational Physics,2007,2(2):293-309.
[15]  南统超,吴吉春.集合卡尔曼滤波估计水文地质参数的局域化修正[J].水科学进展,2010,21(5):613-621.Nan Tongchao,Wu Jichun.Localization corrections for the estimation of hydrogeological parameters using ensemble Kalman filter[J].Advances in Water Science,2010,21(5):613-621.
[16]  Evensen G.Sampling strategies and square root analysis schemes for the EnKF[J].Ocean Dyn.,2004,54:539-560.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133