全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法 A spectral similarity matching classifier based on conditional random field for hyperspectral remote sensing imagery

Keywords: 高光谱,光谱匹配,空谱融合,光谱相似性测度,条件随机场

Full-Text   Cite this paper   Add to My Lib

Abstract:

高空间分辨率的高光谱遥感数据不仅能够获取地物近似连续的光谱曲线,还具有丰富的空间信息.传统的基于单像元的光谱匹配方法无法将这两种特征很好地结合.针对该问题,提出将条件随机场(CRF)模型引入光谱匹配方法.CRF模型通过构造像元邻域描述空间信息,解决了基于单像元光谱匹配方法仅考虑光谱信息的不足,实现了聚类过程中光谱和空间信息的融合;然而,传统CRF模型基于欧氏距离和马氏距离等相似性测度,无法适应于高光谱遥感影像的数据特征,因此利用光谱相似性测度改进传统CRF模型的相似性测度准则.实验证明,所提出方法能够有效解决传统光谱匹配方法结果的噪声问题,较好地保留了地物的形状特征,分类精度得到提高

References

[1]  Christopher T Symons,Nagiza F Samatova,Ramya Krishnamurthy,Byung H Park,Tarik Umar,David Buttler,Terence Critchlow,David Hysom.Multi-criterion active learning in conditional random fields[C]//Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence,2006.
[2]  Zhang Guangyun,Jia Xiuping.Simplified conditional random fields with class boundary constraint for spectral-spatial based remote sensing image classification[J].IEEE Geoscience and Remote Sensing Letters,2012,9(5):856-860.
[3]  Zhong Yanfei,Lin Xuemei,Zhang Liangpei.A support vector conditional random fields classifier with a mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2014,7(4):1314-1330.
[4]  Dudley K L,Dennison P E,Roth K L,Roberts D A,Coates A R.A multi-temporal spectral library approach for mapping vegetation species across spatial and temporal phenological gradients[J].Remote Sensing of Environment,2015,167:121-134.
[5]  Paoli A,Melgani F,Pasolli E.Clustering of hyperspectral images based on multiobjective particle swarm optimization[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(12):4175-4188.
[6]  Zhang L,Zhang L,Tao D,Huang X.On combining multiple features for hyperspectral remote sensing image classificatio[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):879-893.
[7]  Du B,Zhang L,Zhang L,Chen T,Wu K.A discriminative manifold learning based dimension reduction method for hyperspectral classification[J].International Journal of Fuzzy Systems,2012,14(2):272-277.
[8]  Artan Y,Langer D L,Haider M A,van der Kwast T H,Evans A J,Wernick M N,Yetik I S.Prostate cancer segmentation with multispectral MRI using cost-sensitive conditional random fields[C]//Proc.IEEE Int.Symp.Biomed.Imag.,2009:278-281.
[9]  Scharstein D,Pal C.Learning conditional random fields for stereo[C]//Proc.IEEE Conf.Comput.Vis.Pattern Recognit.,2007:1-8.
[10]  Freek van der Meer ab.The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery[J].International Journal of Applied Earth Observations and Geoinformation,2006,8(1):3-17.
[11]  Tadashi Nomoto.Discriminative sentence compression with conditional random fields[J].Science Direct,2007,43:1571-1587.
[12]  Chein-I Chang.An information-theoretic approach to spectral variability,similarity,and discrimination for hyperspectral image[J].IEEE Transactions on Information Theory,2000,46(5):1927-1932.
[13]  王涛,刘少峰,杨金中,等.改进的光谱角制图沿照度方向分类法及其应用——以ETM数据为例[J].遥感学报,2007,11(1):77-84.Wang Tao,Liu Shaofeng,Yang Jinzhong,et al.An improved SAM classification with direction of irradiance and its application——The studies on ETM data[J].Journal of Remote Sensing,2007,11(1):77-84.
[14]  Yukihiro Hamasuna,Yasunori Endo,Sadaaki Miyamoto.On mahalanobis distance based fuzzy c-means clustering for uncertain data using penalty vector regularization[C]//IEEE International Conference on Fuzzy Systems,2011:810-815.
[15]  HiroyukiSato,YoshihikoHasegawa,DanushkaBollegala,HitoshiIba.Improved sampling using loopy belief propagation for probabilistic model building genetic programming[J].Swarm and Evolutionary Computation,2015,23:1-10.
[16]  Youngslnn SohnN,Sanjay Rebello.Supervised and unsupervised spectral angle classifiers[J].Photogrammetric Engineering&Remote Sensing,2002,68(12):1271-1280.
[17]  Sminchisescu C,Kanaujia A,Li Z,Metaxas D.Conditional models for contextual human motion recognition[J].Comput.Vis.Image Understand,2006,104:210-220.
[18]  Zhong Y F,Zhang L P,Huang B.An unsupervised artificial immune classifier for multi/hyperspectral remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(2):420-431.
[19]  Jiao H,Zhong Y,Zhang L.An unsupervised spectral matching classifier based on artificial DNA computing for hyperspectral remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(8):4524-4538.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133