全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

一种基于域密度的蚁群系统(AS)改进算法及结果解析 An improved AS algorithm and result analyzing based on domain and its density

Keywords: TSP,蚁群系统(AS),,密度,DDACO

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对蚁群算法在求解类似TSP问题时,所涉及图的节点分布在总体上具有显著差异的情况,定义域和密度的概念,在此基础上提出具有域和密度特征的AS改进算法DDACO.对DDACO算法的基本原理和策略进行了介绍,通过判断节点是否位于优先域,进而对信息素和下一节点的选择概率进行处理,以改进AS算法.对DDACO算法的具体构建过程进行了详细地描述,利用实例数据对算法构建的过程进行了说明.最后分别对DDACO和AS求解TSP问题分别进行实验测试,分析了测试结果差别的原因.测试的最终结果表明,DDACO在解决具有显著节点密度差异和节点规模比较大时和AS算法相比在时间和收敛性上具有明显的优势

References

[1]  Dorigo M,Stutzle T.Ant Colony Optimization[M].Cambridge,MA:The MIT Press,2004:26-46.
[2]  宋超,刘明,龚海刚,等.基于蚁群优化解决传感器网络中的能量洞问题[J].软件学报,2009,10(20):2729-2743.Song Chao,Liu Ming,Gong Haigang,et al.ACObased algorithm for solving energy hole problems in wireless sensor networks[J].Journal of Software,2009,10(20):2729-2743.
[3]  夏亚梅,程渤,陈俊亮,等.基于改进蚁群算法的服务组合优化[J].计算机学报,2012,35(2):270-281.Xia Yamei,Cheng Bo,Chen Junliang,et al.Optimizing service composition based on improved ant colony algorithm[J].Chinese Journal of Computers,2012,35(2):270-281.
[4]  田志波,唐立新,任一鸣,等.基于合成邻域的蚁群算法求解无委托板坯匹配问题[J].自动化学报,2009,35(2):186-192.Tian Zhibo,Tang Lixin,Ren Yiming,et al.Solving open-order Slab matching problem by ACO with compound neighborhood[J].ACTA Automatic Sinica,2009,35(2):186-192.
[5]  Jayadeva,Sameena Shah,Amit Bhaya,et al.Ants find the shortest path:a mathematical proof[J].Swarm Intelligence,2013,(3):43-62.
[6]  Dorigo M.Optimization,learning and natural algorithm[D].Milan:Dipartimento di Elettronica,Politecnico di Milano,1992.
[7]  Dorigo M,Gambardella L M.Ant colonies for the traveling salesman problem[J].BioSystems,1997,43(2):73-82.
[8]  Bullnheimer B,Hartl R F,Strauss C.A new rank based version of the ant system—A computational study[J].Central European Journal for Operations Research and Economics,1999,7(1):25-38.
[9]  Stutzle T,Hoos H.MAX-MIN ant system[J].Future Generation Computer Systems,2000,16(8):889-914.
[10]  Dorigo M,Gambardella L M.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
[11]  Dhananjay Thiruvady,Gaurav Singh,Andreas T,et al.Constraint-based ACO for a shared resource constrained scheduling problem[J].International Journal of Production Economics,2013,141(1):230-242.
[12]  Rivero J,Cuadra D,Calle J,et al.Using the ACO algorithm for path searches in social networks[J].Applied Intelligence,2012,36(4):899-917
[13]  黄翰,郝志峰,吴春国,等.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353.Huang Han,Hao Zhifeng,Wu Chunguo,et al.The convergence speed of ant colony optimization[J].Chinese Journal of Computers,2007,30(8):1344-1356.
[14]  Munoz-Organero M,Ramirez G,Merino P,et al.Analyzing convergence in e-learning resource filtering based on ACO techniques:a case study with telecommunication engineering students[J].IEEE Transactions on Education,2010,53(4):542-546.
[15]  Blum C,Sampels M.When model bias is stronger than selection pressure[C]//Proceedings of the Seventh International Conference on Parallel Problem Solving from Nature.Berlin:Springer-Verlag,2002:893-902.
[16]  Blum C,Sampels M,Zlochin M.On a particularity in model-based search[C]//Proceedings of the Genetic and Evolutionary Computation Conference(GECCO-2002).San Francisco:Morgan Kaufmann,2002:35-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133