全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

高压输电线路巡检机器人续航里程的预测方法 Method for predicting endurance mileage for high voltage power transmission line inspection robot

Keywords: 巡线机器人,剩余电量,架空地线,续航预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

续航里程预测是高压线路巡线机器人要解决的一项工程实用化关键技术问题.首先通过对机器人所用锂电池进行放电实验,用负载电压法处理实验数据后得出机器人电池剩余电量函数.然后根据机器人的工作环境建立机器人在巡检作业时在线路上行走、越障、巡视等工况下的能耗模型,得出机器人续航里程估计方法.最后通过实验验证了该续航里程估计方法的正确性和实用性,最后提出并验证了一种续航预测误差方法,为巡检机器人的电源设计和线路巡检方案规划以及无动力下坡空速与馈能的研究提供了理论依据

References

[1]  孟遂民.架空输电线路设计[M].北京:中国电力出版社,2007:67.Meng Suimin.Design of Overhead Transmission Line[M].Beijing:China Power Press,2007:67.
[2]  王军平,曹秉刚,陈全世.基于自适应滤波的电动汽车动力电池荷电状态估计方法[J].机械工程学报,2008,44(5):76-79.Wang Junping,Cao Binggang,Chen Quanshi.Self-adaptive filtering based state of charge estimation method for electric vehicle batteries[J].Chinese Journal of Mechanical Engineering,2008,44(5):76-79.
[3]  刘根宁,呙年,梁自超.覆冰状态下架空输电线路模型参数变化分析[J].电力建设,2014,35(12):84-88.Liu Genning,Guo Nian,Liang Zichao.Icing overhead transmission line model parameter variation analysis[J].Electric Power Construction,2014,35(12):84-88.
[4]  吴功平,肖晓晖,肖华,等.架空高压输电线路巡线机器人样机研制[J].电力系统自动化,2006,30(13):90-93.Wu Gongping,Xiao Xiaohui,Xiao Hua,et al.Development of a mobile inspection robot for high voltage power transmission line[J].Automation of Electric Power Systems,2006,30(13):90-94.
[5]  付兴伟,吴功平,周鹏,等.基于卡尔曼滤波的巡视机器人能耗估计[J].浙江大学学报:工学版,2015,49(4):670-675.Fu Xingwei,Wu Gongping,Zhou Peng,et al.Estimation of energy consumption for inspection robot based on Calman filter[J].Journal of Zhejiang University:Engineering Science,2015,49(4):670-675.
[6]  付兴伟,景辉,吴功平,等.沿地线穿越越障巡线机器人能耗模型的研究[J].武汉大学学报(工学版),2014,47(4):565-570.Fu Xingwei,Jing Hui,Wu Gongping,et al.Research on energy consumption model of an autonomous inspection robot for ground wire of overhead transmission line[J].Engineering Journal of Wuhan University,2014,47(4):565-570.
[7]  林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378.Lin Chengtao,Wang Junping,Chen Quanshi.Methods for state of charge estimation of EV batteries and their application[J].Battery,2004,34(5):376-378.
[8]  林成涛,陈全世,王军平,等.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251.Lin Chengtao,Chen Ouanshi,Wang Junping,et al.Improved Ah counting method for state of charge estimation of electric vehicle batteries[J].Journal Tsinghua Univerity(Science&Technology),2006,46(2):247-251.
[9]  谭晓军.电动汽车动力电池管理系统设计[M].广州:中山大学出版社,2011:95-117.Tan Xiaojun.Design of Power Battery Management System for Electric Vehicle[M].Guangzhou:Zhongshan University Press,2011:95-117.
[10]  Plett Gregory L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs-Part 2.modeling and identification[J].Journal of Power Sources,2004,134(2):262-276.
[11]  王军平,陈全世,林成涛.镍氢电池组的荷电状态估计方法研究[J].机械工程学报,2005,41(12):62-65.Wang Junping,Chen Quanshi,Lin Chengtao.Study on estimating of the state of charge of Ni/MH batterypack for electric vehicle[J].Chinese Journal of Mechanical Engineering,2005,41(12):62-65.
[12]  Cheng Bo,Bai Zhifeng,Cao Binggang.State of charge estimation based on evolutionary neural network[J].Energy Conversion and Management,2008,49(10):2788-2794.
[13]  Novie A,W,Jaeho C.LiPB battery SOC estimation using extended Kalman filter improved with variation of single dominant parameter[J].Journal of Power Electronics,2012,12(1):40-48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133