全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

小波分形算法在旋转机械振动信号特征提取中的应用 Application of wavelet fractal algorithm to feature extraction of rotating machinery vibration signals

Keywords: 分形维数,关联维数,小波分形算法,旋转机械振动信号

Full-Text   Cite this paper   Add to My Lib

Abstract:

为克服传统分形理论不包括信号细节成分的缺陷,提出了一种基于小波分形算法的旋转机械故障特征提取算法.该算法将小波函数和分形维数2种故障诊断方法结合起来,既考虑信号细节成分,也注重其局部与整体的关系.利用转子试验台系统模拟了3种故障工况下的旋转机械振动信号,并分别用传统分形维数算法和所提出的小波分形算法对其进行了特征提取.结果表明,2种算法提取得到的特征均有良好效果,但小波分形算法具有较高的准确性,为准确提取旋转机械振动信号故障特征提供了一种快速有效的新方法

References

[1]  黄伟国.基于振动信号特征提取与表达的旋转机械状态监测与故障诊断研究[D].合肥:中国科学技术大学,2010:21-30.Huang Weiguo.Research on feature extraction and representation with vibration signal for rotary machinery condition monitoring and fault diagnosis[D].Hefei:University of Science and Technology of China,2010:21-30.
[2]  董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社,1991:214-215.Dong Lianke.Fractal Theory and Its Application[M].Shenyang:Liaoning Science and Technology Press,1991:214-215.
[3]  Donohue D L,Johnston I M.Adapting to unknown smoothness via wavelet shrinkage[J].J ASA,1995,90:1200-1223.
[4]  Wornell G W,Oppenheim A V.Estimation of fractal signals from noisy measurements using wavelets[J].IEEE Trans Signal Proc,1992,40:611-623.
[5]  苏立,南海鹏,余向阳,等.基于改进阈值函数的小波降噪分析在水电机组振动信号中的应用[J].水力发电学报,2012,(3):246-251.Su Li,Nan Haipeng,Yu Xiangyang,et al.Application of wavelet denoising of improved threshold function to vibration signal analysis of hydroelectric units[J].Journal of Hydroelectric Engineeriong,2012,(3):246-251.
[6]  党建武,黄建国.基于GP算法的关联维计算中参数取值的研究[J].计算机应用研究,2004,(1):48-51.Dang Jianwu,Huang Jianguo.Study of the parameters used in calculating correlative dimension based on GP algorithm[J].Application Research of Computers,2004,(1):48-51.
[7]  梁武科,张彦宁,罗兴锜.水电机组故障诊断系统信号特征的提取[J].大电机技术,2003,(4):53-56.Liang Wuke,Zhang Yanning,Luo Xingqi.Characteristic pickup of hydroelectric set fault diagnose system[J].Mechanical&Electrical Technology,2003,(4):53-56.
[8]  Yang D M,Stomach A F,MacDonnell P,et al.Third-order spectral techniques for the diagnosis of motor bearing condition using artificial neural networks[J].Mechanical Systems and Signal Processing,2002,(16):391-411.
[9]  张济忠.分形[M].北京:清华大学出版社,1997:112-114.Zhang Jizhong.Fractal[M].Beijing:Tsinghua University Press,1997:112-114.
[10]  Howard C Chloe,Clark E Poole,Andrea M Yu,et al.Novel identification of intercepted signals from unknown radio transmitters[J].Proceedings of the SPIE,1995,(4):504-517.
[11]  Peter Grasberg,Tamar Privacies.Measuring the strangeness of strange attractors[J].Physica D,1983,9:189-208.
[12]  Flandrin P.On the spectrum of fractional Brownian motions[J].IEEE Trans Inform Theory,1989,35:197-199.
[13]  Flandrin P.Wavelet analysis and synthesis of fractal Brownian motions[J].IEEE Trans Inform Theory,1992,38(2):910-917.
[14]  施泽进,李忠权,应丹琳.序列数据关联维的计算及意义[J].成都理工学院学报,1996,23(2):88-92.Shi Zejin,Li Zhongquan,Ying Danlin.Correlation dimensional calculation of series data and its significance[J].Journal of Chengdu Institute of Technology,1996,23(2):88-92.
[15]  Jiang Y J,Tanabashi Y,Xiao J.Relationship between surface fractal characteristic and hydro-mechanical behavior of rock joints[C]//Proceedings of the ISRM International Symposium third ARMS,2004,2:833-843.
[16]  刘式达,刘式适.分形与分维引论[M].北京:气象出版社,1992:45-48.Liu Shida,Liu Shishi.An Introduction to the Fractal and Fractal Dimension[M].Beijing:China Meteorological Press,1992:45-48.
[17]  Mo Yuen Chow,Robert N Sharpe,James C Hung.On the application and design of artificial neural networks for motor fault detection[J].IEEE Transactions on Industrial Electronics,1993,40(2):181-196.
[18]  马晋,江志农,高金吉.基于混沌分形理论的特征提取技术在气阀故障诊断中的应用[J].振动与冲击,2012,31(19):26-30.Ma Jin,Jiang Zhinong,Gao Jinji.Feature extraction method based on chaotic fractal theory and its application in fault diagnosis of gas valves[J].Journal of Vibration and Shock,2012,31(19):26-30.
[19]  刘雨佳.滑动轴承声发射信号形态滤波及分形特征提取方法[D].长沙:长沙理工大学,2013:13-17.Liu Yujia.Morphological filtering and fractal features extraction method for acoustic emission signals of journal bearings[D].Changsha:Changsha University of Science and Technology,2013:13-17.
[20]  James A Leonard,Mark A Kramer.Radial basis function networks for classifying process faults[J].IEEE Control Systems,1991,11(3):31-38.
[21]  Larry P Heck,Chou K C.Gaussian mixture model classifiers for machine monitoring[J].IEEE Acoustics Speech and Signal Processing,1994,(7):4493-4496.
[22]  赵道利,梁武科,罗兴琦,等.水电机组振动信号的子带能量特征提取方法研究[J].水力发电学报,2004,(6):116-119.Zhao Daoli,Liang Wuke,Luo Xingqi,et al.On subband energy feature extraction method of vibration fault signals of hydroelectric sets[J].Journal of Hydroelectric Engineering,2004,(6):116-119.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133