全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于模糊系统的温升计算新方法 A new method for calculating temperature rise based on fuzzy system

Keywords: 模糊系统,阀厅金具,试验数据,梯度下降算法,改进粒子群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统温升计算方法的缺陷,提出了结合模糊系统的温升计算新方法,运用新方法对阀厅金具温升进行计算.通过阀厅金具温升试验得到足量数据,将所有数据分成训练数据与测试数据,要求训练数据代表样本空间的主要特征.将基本粒子群算法与梯度下降算法结合,得到改进粒子群算法.利用训练数据训练模糊系统,所用算法依次为基本粒子群算法、梯度法、改进算法,改进算法的收敛效果最好.运用回归分析对相应温升进行计算.通过测试检测各模型可靠性,结果说明通过改进粒子群算法训练模糊系统计算温升是可行的

References

[1]  王刚,谭盛武,林生军,等.阀厅连接金具温升模糊预测策略[J].河南理工大学学报(自然科学版),2017,36(1):107-113.Wang Gang,Tan Shengwu,Lin Shengjun,et al.The fuzzy predicting strategy for the rise of temperature of connection fitting in value hall[J].Journal of Hennan Polytechnic University(Natural Science),2017,36(1):107-113.
[2]  苏小平.油浸式变压器绕组热点温度计算模型及预测方法研究[D].重庆:重庆大学,2012:30-45.Su Xiaoping.Investigation into the calculation model and prediction method of hot-spot temperature for oilimmersed transformers[D].Chongqing:Chongqing University,2012:30-45.
[3]  唐腾飞,黄耀英,周宜飞,等.基于分布式光纤测温的施工期混凝土坝温度场神经网络重构[J].武汉大学学报(工学版),2013,46(3):577-582.Tang Tengfei,Huang Yaoying,Zhou Yifei,et al.Neural network reconstruction of temperature field during concrete dam construction period based on distributed optical fiber temperature monitoring[J].Engineering Journal of Wuhan University,2013,46(3):577-582.
[4]  Pradhan M K,Ramu T S.Diagnostic testing of oil-impregnated paper insulation in prorated power transformers under accelerated stress[C]//Yen J.Conference Record of the 2004IEEE International Symposium on Electrical Insulation.Beijing:China Electric Power Press,2004:66-69.
[5]  Assuncao T,Silvino J L,Resende P.Transformer topoil temperature modeling and simulation[J].Transactions on Engineering,Computing and Technology,2006,15(10):240-245.
[6]  陈伟根,奚红娟,苏小平,等.广义回归神经网络在变压器绕组热点温度预测中的应用[J].高电压技术,2012,38(1):16-21.Chen Weigen,Xi Hongjuan,Su Xiaoping,et al.Application of generalized regression neural network to transformer winding hot spot temperature forecasting[J].High Voltage Engineering,2012,38(1):16-21.
[7]  王刚,谭盛武,林生军,等.基于模糊系统的金具温升预测方法[J].解放军理工大学学报(自然科学版),2017,18(1):97-102.Wang Gang,Tan Shengwu,Lin Shengjun,et al.The method for predicting the rise of temperature of fitting based on fuzzy system[J].Journal of PLA University of Science and Technology(Natural Science Edition),2017,18(1):97-102.
[8]  李孟励.基于BP神经网络的变压器绕组热点温度预测方法研究[D].重庆:重庆大学,2010:20-36.Li Mengli.Studies on the prediction method of transformer winding hot spot temperature based on BPNN[D].Chongqing:Chongqing University,2010:20-36.
[9]  中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T11022-2011高压开关设备和控制设备标准的共用技术要求[S].北京:中国标准出版社,2012:22-30.State Administration of Quality Supervision,Inspection and Quarantine of People’s Republic of China,China National Standardization Management Committee.GB/T11022-2011 Commom Specifications for High-Voltage Switchgear and Control Gear Standards[S].Beijing:China Standards Press,2012:22-30.
[10]  Tylavsky D J,He Q,Mcculla G A,et al.Sources of error in substation distribution transformer dynamic thermal modeling[J].IEEE Transactions on Power Delivery,2000,15(1):178-185.
[11]  滕黎.油浸式变压器热路计算及热点温度遗传支持向量机预测研究[D].重庆:重庆大学,2012:18-32.Teng Li.Studies on thermal circuit calculation and genetic support vector machine prediction for hot-spot temperature of oil—immersed transformer[D].Chongqing:Chongqing University,2012:18-32.
[12]  He Q,Si J,Tylavsky D J.Prediction of top-oil temperature for transformers using neural networks[J].IEEE Transactions on Power Delivery,2000,15(4):1205-1211.
[13]  Galdi V,Ippolito L,Piccolo A,et al.Neural diagnostic system for transformer thermal overload protection[J].Electrical Engineering and Electrical Power Application,2003,147(5):415-421.
[14]  Pylvanainen J K,Nousiainen K,Verho P.Studies to utilize loading guides and ANN for oil-immersed distribution transformer condition monitoring[J].IEEE Transactions on Power Delivery,2007,22(1):201-207.
[15]  邓建国,罗隆福.基于BP神经网络的大型水轮发电机定子铁心的温度预测[J].湖南大学学报(自然科学版),2000,27(1):72-75.Deng Jianguo,Luo Longfu.BP neural network method for temperature rise prediction of large hydrogenerator[J].Journal of Hunan University(Natural Sciences Edition),2000,27(1):72-75.
[16]  朱德举,马拓,刘武华.碳纤维带电热技术的试验研究[J].湖南大学学报(自然科学版),2016,43(5):131-136.Zhu Deju,Ma Tuo,Liu Wuhua.Experimental study on electrical heating technology utilizing carbon fiber tape[J].Journal of Hunan University(Natural Sciences Edition),2016,43(5):131-136.
[17]  唐勇,常黎,周建中.基于改进BP算法的水电机组轴瓦温度预测[J].华中科技大学学报(自然科学版),2002,30(4):78-80.Tang Yong,Chang Li,Zhou Jianzhong.The application of improved BP neural network to temperature modeling and forecasting in shaft bushing of hydroelectric unit[J].Journal of Huazhong University of Science and Technology(Nature Science Edition),2002,30(4):78-80.
[18]  Daponte P,Grimaldi D,Piccolo A,et al.A neural diagnostic system for the monitoring of transformer heating[J].Measurement,1996,18(1):35-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133