全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Lipschitz空间Λ_α(R)和Zygmund函数类Λ_*(R)的紧小波框架系数刻画 Characterizations of the Lipschitz Spaces Λ_α(R)and the Zygmund Class Λ_*(R) in Terms of Tight Wavelet Frame Coefficients

Keywords: Lipschitz空间,Zygmund类,框架,紧小波框架

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过赋予母框架小波一定的正则性,利用卷积的知识,证明了Lipschitz空间Λ_α(R)和Zygmund函数类Λ_*(R)这两个函数空间可以通过紧小波框架分解系数来刻画

References

[1]  GRIBONVAL R,NIELSEN M.On approximation with spline generated framelets[J].Constr Approx,2004,20:207-232.
[2]  RON A,SHEN Z.Affine systems in L2(Rd):The analysis of the analysis operator[J].J Functional Anal Appl,1997,148(2):408-447.
[3]  DAUBECHIES I,HAN B,RON A,et al.Framelets:MRA-based constructions of wavelet frames[J].Appl Comp Harmonic Anal,2003,14(1):1-46.
[4]  鲁大勇,樊启斌.框架提升的两种方案[J].数学物理学报,2010,30(3):603-612.LU D Y,FAN Q B.Two schemes for lifting frames[J].Acta Mathematica Scientia,2010,30(3):603-612(Ch).
[5]  BENEDETTO J J,TREIBER O M.Wavelet frames:multiresolution analysis and extension principles[C]//Wavelet Transforms and Time-Frequency Signal Analysis,Boston:Birkhuser,2001:1-36.
[6]  SCHMIDT E.Zur theorie der linearen und nichtlinearen integralgleichungen[J].Math Ann,1907,63(4):433-476.
[7]  HERNNDEZ E,WEISS G.A First Course on Wavelets[M].Boca Raton:CRC Press,1996.
[8]  HAN B.On tight dual wavelet frames[J].Appl Comput Harmon Anal,1997,4:380-413.
[9]  LU D Y,FAN Q B.A class of tight framelet packets[J].Czechoslovak Mathematical Journal,2011,61(3):623-639.
[10]  FRAZIER M,GARRIGOS G,WANG K,et al.A characterization of functions that generate wavelet and related expansion[J].J Fourier Anal Appl,1997,3:883-906.
[11]  STEIN E M.Singular Integrals and Differentiability Properties of Functions[M].Princeton:Princeton University Press,1970.
[12]  BORUP L,GRIBONVAL R,NIELSEN M.Tight wavelet frames in Lebesgue and Sobolev spaces[J].J Funct Paces Appl,2004,2(3):227-252.
[13]  BORUP L,GRIBONVAL R,NIELSEN M.Bi-framelet systems with few vanishing moments characterize Besov spaces[J].Appl Comput Harmon Anal,2004,17(1):3-28.
[14]  HAN B,SHEN Z.Dual wavelet frames and Riesz bases in Sobolev spaces[J].Constr Approx,2009,29:369-406.
[15]  DEVORE R A.Nonlinear approximation[J].Acta Numerica,1998,7(7):51-150.
[16]  LU D Y,FAN Q B.Characterizations of Lp(R)using tight wavelet frames[J].Wuhan University Journal of Natural Sciences,2010,15(6):461-466.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133