Lipschitz空间Λ_α(R)和Zygmund函数类Λ_*(R)的紧小波框架系数刻画 Characterizations of the Lipschitz Spaces Λ_α(R)and the Zygmund Class Λ_*(R) in Terms of Tight Wavelet Frame Coefficients
鲁大勇,樊启斌.框架提升的两种方案[J].数学物理学报,2010,30(3):603-612.LU D Y,FAN Q B.Two schemes for lifting frames[J].Acta Mathematica Scientia,2010,30(3):603-612(Ch).
[5]
BENEDETTO J J,TREIBER O M.Wavelet frames:multiresolution analysis and extension principles[C]//Wavelet Transforms and Time-Frequency Signal Analysis,Boston:Birkhuser,2001:1-36.
[6]
SCHMIDT E.Zur theorie der linearen und nichtlinearen integralgleichungen[J].Math Ann,1907,63(4):433-476.
[7]
HERNNDEZ E,WEISS G.A First Course on Wavelets[M].Boca Raton:CRC Press,1996.
[8]
HAN B.On tight dual wavelet frames[J].Appl Comput Harmon Anal,1997,4:380-413.
[9]
LU D Y,FAN Q B.A class of tight framelet packets[J].Czechoslovak Mathematical Journal,2011,61(3):623-639.
[10]
FRAZIER M,GARRIGOS G,WANG K,et al.A characterization of functions that generate wavelet and related expansion[J].J Fourier Anal Appl,1997,3:883-906.
[11]
STEIN E M.Singular Integrals and Differentiability Properties of Functions[M].Princeton:Princeton University Press,1970.
[12]
BORUP L,GRIBONVAL R,NIELSEN M.Tight wavelet frames in Lebesgue and Sobolev spaces[J].J Funct Paces Appl,2004,2(3):227-252.
[13]
BORUP L,GRIBONVAL R,NIELSEN M.Bi-framelet systems with few vanishing moments characterize Besov spaces[J].Appl Comput Harmon Anal,2004,17(1):3-28.
[14]
HAN B,SHEN Z.Dual wavelet frames and Riesz bases in Sobolev spaces[J].Constr Approx,2009,29:369-406.
[15]
DEVORE R A.Nonlinear approximation[J].Acta Numerica,1998,7(7):51-150.
[16]
LU D Y,FAN Q B.Characterizations of Lp(R)using tight wavelet frames[J].Wuhan University Journal of Natural Sciences,2010,15(6):461-466.