全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于多尺度全卷积网络特征融合的人群计数 Crowd Counting Based on Feature Fusion of Multi-Scale Fully Convolutional Networks

Keywords: 人群计数,全卷积网络,语义信息,多尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

图像中的人群计数在公共安全领域具有重要价值.为了解决由于摄像机透视效果、人群密度分布不均匀和严重遮挡等导致人群计数准确率低的问题,本文提出一种多尺度全卷积网络架构,用于准确地估计任意摄像头视角的静态图片的人群密度.通过利用不同尺度的卷积核,使分支网络能更好地学习图像中头部特征变化.同时,由于每个分支网络设计的网络层数量不同,因此这种多尺度的网络组合能够有效地捕捉高层的语义信息和低层的细节信息.实验结果显示,本方法在Shanghai-tech标准数据集上具有较高的人群计数准确率

References

[1]  SOURTZINOS P,VELASTIN S A,JARA M,et al.People counting in videos by fusing temporal cues from spatial context-aware convolutional neural networks[C]//Computer Vision-ECCV 2016 Workshops.Cham:Springer,2016:655-667.DOI:10.1007/978-3-319-48881-3_46.
[2]  WANG C,ZHANG H,YANG L,et al.Deep people counting in extremely dense crowds[C]//ACM International Conference on Multimedia.New York:ACM,2015:1299-1302.DOI:10.1145/2733373.2806337.
[3]  BROSTOW G J,CIPOLLA R.Unsupervised bayesian detection of independent motion in crowds[C]//Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2006:594-601.DOI:10.1109/CVPR.2006.320.
[4]  PHAM V Q,KOZAKAYA T,YAMAGUCHI O,et al.COUNT forest:Co-voting uncertain number of targets using random forest for crowd density estimation[C]//IEEE International Conference on Computer Vision.Washington,D C:IEEE Computer Society,2015:3253-3261.DOI:10.1109/ICCV.2015.372.
[5]  CHEN K,GONG S,XIANG T,et al.Cumulative attribute space for age and crowd density estimation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2013:2467-2474.DOI:10.1109/CVPR.2013.319.
[6]  WANG M,WANG X.Automatic adaptation of a generic pedestrian detector toa specific traffic scene[C]//IEEE Conference on Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2011:3401-3408.DOI:10.1109/CVPR.2011.5995698
[7]  FUKUSHIMA K.Neocognitron:A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[J].Biological Cybernetics,1980,36(4):193-202.DOI:10.1007/978-3-642-46466-9_18.
[8]  LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.DOI:10.1109/5.726791.
[9]  SHELHAMER E,LONG J,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2014,39(4):640-651.DOI:10.1109/TPAMI.2016.2572683.
[10]  RABAUD V,BELONGIE S.Counting crowded moving objects[C]//Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2006:705-711.DOI:10.1109/CVPR.2006.92.
[11]  ZHANG Y Y,ZHOU D S,CHEN S Q,et al.Singleimage crowd counting via multi-column convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2016:589-597.DOI:10.1109/CVPR.2016.70.
[12]  NOH H,HONG S,HAN B.Learning deconvolution network for semantic segmentation[C]//IEEE International Conference on Computer Vision.Washington,D C:IEEE Computer Society,2015:1520-1528.DOI:10.1109/ICCV.2015.178.
[13]  GHIASI G,FOWLKES C C.Laplacian pyramid reconstruction and refinement for semantic segmentation[C]//Computer Vision-ECCV 2016.Cham:Springer,2016::519-534.DOI:10.1007/978-3-319-46487-9_32.
[14]  SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[DB/OL].[2017-12-03].http://x-algo.cn/wp-content/uploads/2017/01/very-deep-convolutional-networks-for-large-scale-image-recognition.pdf.
[15]  ZHANG C,LI H,WANG X,et al.Cross-scene crowd counting via deep convolutional neural networks[C]//Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2015:833-841.DOI:10.1109/CVPR.2015.7298684.
[16]  ARTETA C,LEMPITSKY V,NOBLE J A,et al.Interactive Object Counting[DB/OL].[2017-02-03].https://www.robots.ox.ac.uk/~vgg/publications/2014/Arteta14/arteta14.pdf.
[17]  CHEN C L,GONG S,XIANG T.From semi-supervised to transfer counting of crowds[C]//IEEE International Conference on Computer Vision.Washington,D C:IEEE Computer Society,2013:2256-2263.DOI:10.1109/ICCV.2013.270.
[18]  CHEN K,CHEN C L,GONG S G,et al.Feature mining for localised crowd counting[C]//British Machine Vision Conference.Dundee:BMVA Press,2012:1-11.DOI:10.5244/C.26.21.
[19]  SAM D B,SURYA S,BABU R V.Switching convolutional neural network for crowd counting[C]//IEEE Conference on Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2017:4031-4039.
[20]  BOOMINATHAN L,KRUTHIVENTI S S S,BABU R V.CrowdNet:A deep convolutional network for dense crowd counting[C]//ACM on Multimedia Conference.New York:ACM,2016:640-644.
[21]  WALACH E,WOLF L.Learning to Count with CNN Boosting[DB/OL].[2017-10-12].https://www.cs.tau.ac.il/~wolf/papers/learning-count-cnn.pdf.DOI:10.1007/978-3-319-46475-6_41.
[22]  CHAN A B,LIANG Z S J,VASCONCELOS N.Privacy preserving crowd monitoring:Counting people without people models or tracking[C]//Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2008:1-7.DOI:10.1109/CVPR.2008.4587569.
[23]  PARAGIOS N,RAMESH V.A MRF-based approach for real-time subway monitoring[C]//Computer Vision and Pattern Recognition.Washington,D C:IEEE Computer Society,2001:1034-1040.DOI:10.1109/CVPR.2001.990644.
[24]  王鹏,方志军,赵晓丽,等.基于深度学习的人体图像分割算法[J].武汉大学学报(理学版),2017,63(5):466-470.WAMG P,FANG Z J,ZHAO X L,et al.Human segmentation based on deep learning[J].Journal of Wuhan University(Natural Science Edition),2017,63(5):466-470.DOI:10.14188/j.1671-8836.2017.05.01(Ch)
[25]  ZEILER M D,RANZATO M,MONGA R,et al.On rectified linear units for speech processing[C]//IEEE International Conference on Acoustics,Speech and Signal Processing.Washington,D C:IEEE Computer Society,2013:3517-3521.DOI:10.1109/ICASSP.2013.6638312.
[26]  NAIR V,HINTON G E.Rectified linear units improve restricted boltzmann machines[C]//International Conference on International Conference on Machine Learning.New York:ACM,2010:807-814.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133