全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

面向JPEG图像的隐写分析盲检测方法 A Blind Steganalytic Method to Detect JPEG Image Steganography

Keywords: 盲检测,隐写分析,快速分类,通用隐写分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

隐写分析盲检测存在着检测模型的检测准确性和通用性难以兼顾的问题.本文提出一种用于隐写分析的快速支持向量分类算法FC-SS2LM(fast classification for small sphere with two large margins),通过构造最小超球体和双边最大间隔隐写分析模型,使检测模型既能准确构造分类边界又能考虑不同隐写样本的分布特点,达到了兼顾检测准确性和通用性的目的.在BOSSBase标准图像库上对提出的隐写分析盲检测模型进行验证,实验结果表明,该方法在一定程度上克服了传统隐写分析模型通用性差的缺点,同时提高了实际应用中训练数据样本不平衡情况下的检测准确率.即使在实际应用中训练集样本过大、支持向量较多的情况下,采用该方法计算也可以减小算法复杂度,提高泛化能力和分类速度

References

[1]  CHEN C H,SHI Y Q.JPEG image steganalysis utilizing both intrablock and interblock correlations[C]//IEEE International Symposium on Circuits and Systems.New York:IEEE Press,2008:3029-3032.
[2]  LKOPH B,WILLIAMSON R,SMOLA A,et al.Support vector method for novelty detection[C]//International Conference on Neural Information Processing Systems.Cambridge:MIT Press,1999:582-588.
[3]  KODOVSKY J,FRIDRICH J,HOLUB V.Ensemble classifiers for steganalysis of digital media[J].IEEE Transactions on Information Forensics&Security,2012,7(2):432-444.DOI:10.1109/TIFS.2011.2175919.
[4]  PEVNY T,FRIDRICH J.Merging Markov and DCT features for multi-class JPEG steganalysis[DB/OL].[2017-08-27].https://pdfs.semanticscholar.org/a7b6/d6089d247a06b6c1c920e76a83d8bf9a3bbf.pdf.
[5]  PEVNY T,BAS P,FRIDRICH J.Steganalysis by subtractive pixel adjacency matrix[J].IEEE Transactions on Information Forensics&Security,2010,5(2):215-224.
[6]  LIU Q Z,SUNG A H,QIAO M Y.Neighboring joint density-based JPEG steganalysis[J].ACM Transactions on Intelligent Systems&Technology,2011,2(2):16.
[7]  刘向东,陈兆乾.一种快速支持向量机分类算法的研究[J].计算机研究与发展,2004,41(8):1327-1332.LIU X D,CHEN Z Q.A fast support vector machine classificationalgorithm[J].Computer Research and Development,2004,41(8):1327-1332(Ch).
[8]  HETZL S,MUTZEL P.A graph-theoretic approach to steganography[C]//Communications and Multimedia Security.Berlin:Springer,2005:119-128.
[9]  FRIDRICH J,GOLJAN M,SOUKAL D.Perturbed quantization steganography[J].Multimedia Systems,2005,11(2):98-107.
[10]  KUBAT M,MATWIN S.Addressing the curse of imbalanced training sets:One-Sided selection[C]//International Conference on Machine Learning.Madison:Omni Press,2012:179-186.
[11]  WESTFELD A.High capacity despite better steganalysis:F5-A steganographic algorithm[C]//Fourth Information Hiding Workshop(LNCS 2137).Berlin:Springer-Verlag,2001:289-302.DOI:10.1007/3-540-45496-9.
[12]  LUO P,SU Y.Research on simulated annealing clustering algorithm in the steganalysis of image based on the one-class support vector machine[C]//International Conference on Computer Application and System Modeling.New York:IEEE Press,2010:V14-446-V14-450.
[13]  SALLEE P.Model-Based steganography[C]//Digital Watermarking(LNCS2939).Berlin:Springer,2003:154-167.
[14]  KIM Y,DURIC Z,RICHARDS D.Modified matrix encoding technique for minimal distortion steganography[C]//Information Hiding(LNCS4437).Berlin:Springer,2007:314-327.DOI:10.1007/978-3-540-74124-4_21.
[15]  LI W,WU M,ZHU T,et al.Research on one-class JPEG steganalysis based on dimensionality-reduced correlation features[C]//International Conference on Mechatronic Sciences,Electric Engineering and Computer.New York:IEEE Press,2014:1998-2001.
[16]  WU M,YE J.A small sphere and large margin approach for novelty detection using training data with outliers[J].IEEE Transactions on Pattern Analysis&Machine Intelligence,2009,31(11):2088-92.
[17]  LE T,TRAN D,MA W,et al.An optimal sphere and two large margins approach for novelty detection[C]//International Joint Conference on Neural Networks.New York:IEEE Press,2010:1-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133